首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of supported lipid bilayers (SLBs) on glass from giant unilamellar vesicles (GUVs) was studied using fluorescence microscopy. We show that GUV rupture occurs by at least four mechanisms, including 1), spontaneous rupture of isolated GUVs yielding almost heart-shaped bilayer patches (asymmetric rupture); 2), spontaneous rupture of isolated GUVs yielding circular bilayer patches (symmetric rupture); 3), induced rupture of an incoming vesicle when it contacts a planar bilayer edge; and 4), induced rupture of an adsorbed GUV when a nearby GUV spontaneously ruptures. In pathway 1, the dominant rupture pathway for isolated GUVs, GUVs deformed upon adsorption to the glass surface, and planar bilayer patch formation was initiated by rupture pore formation near the rim of the glass-bilayer interface. Expanding rupture pores led to planar bilayer formation in approximately 10-20 ms. Rupture probability per unit time depended on the average intrinsic curvature of the component lipids. The membrane leaflet adsorbed to the glass surface in planar bilayer patches originated from the outer leaflet of GUVs. Pathway 2 was rarely observed. We surmise that SLB formation is predominantly initiated by pathway 1 rupture events, and that rupture events occurring by pathways 3 and 4 dominate during later stages of SLB formation.  相似文献   

2.
We have developed a method to incorporate the membrane protein bacteriorhodopsin into polymerized bilayers composed of a diacetylenic phosphatidylcholine, 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) and a non-polymerizable phospholipid, dinonanoylphosphatidylcholine (DNPC). The extent of DC8,9PC polymerization in the bilayer was significantly improved when 2:1 mole ratio DNPC-DC8,9PC was used. Octyl glucopyranoside-solubilized bacteriorhodopsin was inserted into the polymerized DNPC-DC8,9PC bilayers by overnight incubation at 4 degrees C followed by dialysis to remove the detergent. The protein was inserted into the membranes after photo-polymerization to avoid inactivation of the protein due to the UV irradiation. The insertion of bacteriorhodopsin into the polymerized DNPC-DC8,9PC membranes was confirmed by density gradient centrifugation, UV/visible spectroscopy, and freeze fracture electron microscopy. The polymerized DNPC-DC8,9PC membranes containing bacteriorhodopsin were about 10% protein by weight. These results suggest that mixed lipid systems such as the DNPC-DC8,9PC can be used to improve both the extent of polymerization and the efficiency of membrane protein incorporation in the polymerized bilayer.  相似文献   

3.
We investigate the role of anionic lipids in the binding to, and subsequent movement of charged protein groups in lipid membranes, to help understand the role of membrane composition in all membrane-active protein sequences. We demonstrate a small effect of phosphatidylglycerol (PG) lipids on the ability of an arginine (Arg) side chain to bind to, and cross a lipid membrane, despite possessing a neutralizing charge. We observe similar membrane deformations in lipid bilayers composed of phosphatidylcholine (PC) and PC/PG mixtures, with comparable numbers of water and lipid head groups pulled into the bilayer hydrocarbon core, and prohibitively large ~20 kcal/mol barriers for Arg transfer across each bilayer, dropping by just 2-3 kcal/mol due to the binding of PG lipids. We explore the causes of this small effect of introducing PG lipids and offer an explanation in terms of the limited membrane interaction for the choline groups of PC lipids bound to the translocating ion. Our calculations reveal a surprising lack of preference for Arg binding to PG lipids themselves, but a small increase in interfacial binding affinity for lipid bilayers containing PG lipids. These results help to explain the nature of competitive lipid binding to charged protein sequences, with implications for a wide range of membrane binding domains and cell perturbing peptides.  相似文献   

4.
Atomic force microscopy (AFM) is employed to reveal the morphological changes of the supported phospholipid bilayers hydrolyzed by a phospholipase A2 (PLA2) enzyme in a buffer solution at room temperature. Based on the high catalytic selectivity of PLA2 toward l-enantiomer phospholipids, five kinds of supported bilayers made of l- and d-dipalmitoylphosphatidylcholines (DPPC), including l-DPPC (upper leaflet adjacent to solution)/l-DPPC (bottom leaflet) (or l/l in short), l/d, d/l, d/d, and racemic ld/ld, were prepared on a mica surface in gel-phase, to explicate the kinetics and mechanism of the enzyme-induced hydrolysis reaction in detail. AFM observations for the l/l bilayer show that the hydrolysis rate for l-DPPC is significantly increased by PLA2 and most of the hydrolysis products desorb from substrate surface in 40 min. As d-enantiomers are included in the bilayer, the hydrolysis rate is largely decreased in comparison with the l/l bilayer. The time used to hydrolyze the as-prepared bilayers by PLA2 increases in the sequence of l/l, l/d, ld/ld, and d/l (d/d is inert to the enzyme action). d-enantiomers in the enantiomer hybrid bilayers remain on the mica surface at the end of the hydrolysis reaction. It was confirmed that the hydrolysis reaction catalyzed by PLA2 preferentially occurs at the edges of pits or defects on the bilayer surface. The bilayer structures are preserved during the hydrolysis process. Based on these observations, a novel kinetics model is proposed to quantitatively account for the PLA2-catalyzed hydrolysis of the supported phospholipid bilayers. The model simulation demonstrates that PLA2 mainly binds with lipids at the perimeter of defects in the upper leaflet and leads to a hydrolysis reaction, yielding species soluble to the solution phase. The lipid molecules underneath subsequently flip up to the upper leaflet to maintain the hydrophilicity of the bilayer structure. Our analysis shows that d-enantiomers in the hybrid bilayers considerably reduce the hydrolysis rate by its ineffective binding with PLA2.  相似文献   

5.
Wan C  Kiessling V  Tamm LK 《Biochemistry》2008,47(7):2190-2198
We showed previously that cholesterol-rich liquid-ordered domains with lipid compositions typically found in the outer leaflet of plasma membranes induce liquid-ordered domains in adjacent regions of asymmetric lipid bilayers with apposed leaflets composed of typical inner leaflet lipid mixtures [Kiessling, V., Crane, J. M., and Tamm, L. K. (2006) Biophys. J. 91, 3313-26]. To further examine the nature of transbilayer couplings in asymmetric cholesterol-rich lipid bilayers, the effects on the lipid phase behavior in asymmetric bilayers of different lipid compositions were investigated. We established systems containing several combinations of natural extracted and synthetic lipids that exhibited coexisting liquid-ordered (lo) and liquid-disordered (ld) domains in a supported bilayer format. We find that lo phase domains are induced in all quaternary inner leaflet combinations composed of PCs, PEs, PSs, and cholesterol. Ternary mixtures of PCs/PEs/Chol, PCs/PSs/Chol also exhibit lo phases adjacent to outer leaflet lo phases. However, with the exception of brain PC extracts, binary PC/Chol mixtures are not induced to form lo phases by adjacent outer leaflet lo phases. Higher melting lipid ad-mixtures of PEs and PSs are needed for lo phase induction in the inner leaflet. It appears that the phase behavior of the inner leaflet mixtures is dominated by the intrinsic chain melting temperatures of the lipid components, rather than by their specific headgroup classes. In addition, similar studies with synthetic, completely saturated lipids and cholesterol show that lipid oxidation is not a factor in the observed phase behavior.  相似文献   

6.
Dickey AN  Faller R 《Biophysical journal》2008,95(12):5637-5647
It has been found experimentally that negatively charged phosphatidic acid (PA) lipids and cholesterol molecules stabilize the nicotinic acetylcholine receptor (nAChR) in a functional resting state that can participate in an agonist-induced conformational change. In this study, we compare phosphatidylcholine (PC) and PA lipid behavior in the presence of the nAChR to determine why PC lipids do not support a functional nAChR. For lipids that are located within 1.0 nm of the protein, both PC and PA lipids have very similar order-parameter and bilayer-thickness values, which indicate that the annular lipid properties are protein-dependent. The most significant difference between the PC and PA bilayers is the formation of a lipid domain around the protein, which is visible in the PA bilayer but not the PC bilayer. This suggests that the PA domain may help stabilize the nAChR resting state. The PA lipids in the microdomain have a decreased order compared to a homogeneous PA bilayer and the lipids near the protein attempt to increase the free space in their vicinity by residing in multiple lateral planes.  相似文献   

7.
When Gd3+, a trivalent lanthanide, binds phospholipids with a high affinity, it elicits strong electrostatic effects on the surface of the lipid bilayer. Two experimental methods were applied to monitor the changes in the boundary and surface potentials induced by Gd3+ adsorption on liposomes and planar lipid bilayer membranes (BLM) made from phosphatidylserine (PS), phosphatidylcholine (PC) and their mixtures. The membrane surface charge density was changed by either varying the PS/PC ratio or by changing the degree of PS headgroup ionization in the range of pH between 2.5 and 7.5. The Gouy-Chapman-Stern (GCS) theory combined with the condition of mass balance in the experimental cell was used for quantitative treatment of ion adsorption and related changes in the diffuse part of the electrical double layer (surface potential). Data obtained using microelectrophoresis of liposome suspensions were well described within the framework of the modified GCS theory with constants of 5.10(4) and 10(3) M-1 for Gd3+ association with PS and PC, respectively (Yu. A. Ermakov, A. Z. Averbakh, and S. I. Sukharev, Biol. Membrany 14:434-445 (1997) (in Russian)). The intramembrane field compensation (IFC) technique used to study Gd3+ adsorption on planar lipid bilayers by monitoring the entire boundary potential gave completely different results. An observed drastic difference (approximately 140 mV) between the changes of boundary and surface potential was interpreted as the change in the dipole potential induced by binding of Gd3+. The magnitude of the surface dipole increased with the concentration of PS in PS/PC mixtures and became significant at most negative surface charges (more than 80% of PS in the mixture) and strongly correlated with the degree of PS ionization at different pH. The nature of structural changes at the membrane/water interface induced by Gd(3+)-PS interaction and possible lipid clusterization are discussed in the context of their biological importance.  相似文献   

8.
Transmembrane profiles of molecular oxygen in lipid bilayers are not only significant for membrane physiology and pathology, but also are essential to the determination of membrane protein structure by site-directed spin labeling. Oxygen profiles obtained with spin-labeled lipid chains have a Boltzmann sigmoidal dependence on the depth into each lipid leaflet, which represents a two-compartment distribution between outer and inner regions of the membrane, with a transfer free energy that depends linearly on distance from the dividing planes. Transmembrane profiles for intramembrane polarity, and for water penetration into the membrane, have an identical form, but are of the reverse sign. Comparison with recently published oxygen profiles from a site-specifically spin-labeled alpha-helical transmembrane peptide validates the use of spin-labeled lipids for all these profiles and provides the necessary bridge to generate the full bilayer from a single lipid leaflet.  相似文献   

9.
《Biophysical journal》2022,121(13):2550-2556
The (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) moiety tethered to the headgroup of phosphatidylcholine (PC) lipid is employed in spin labeling electron paramagnetic resonance spectroscopy to probe the water dynamics near lipid bilayer interfaces. Due to its amphiphilic character, however, TEMPO spin label could partition between aqueous and lipid phases, and may even be stabilized in the lipid phase. Accurate assessment of the TEMPO-PC configuration in bilayer membranes is essential for correctly interpreting the data from measurements. Here, we carry out all-atom molecular dynamics (MD) simulations of TEMPO-PC probe in single-component lipid bilayers at varying temperatures, using two standard MD force fields. We find that, for a dipalmitoylphosphatidylcholine (DPPC) membrane whose gel-to-fluid lipid phase transition occurs at 314 K, while the TEMPO spin label is stabilized above the bilayer interface in the gel phase, there is a preferential location of TEMPO below the membrane interface in the fluid phase. For bilayers made of unsaturated lipids, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), which adopt the fluid phase at ambient temperature, TEMPO is unequivocally stabilized inside the bilayers. Our finding of membrane phase-dependent positioning of the TEMPO moiety highlights the importance of assessing the packing order and fluidity of lipids under a given measurement condition.  相似文献   

10.
Molecular dynamics (MD) computer simulations of five different hydrated unsaturated phosphatidylcholine lipid bilayers built up by 18:0/18:1(n-9)cis PC, 18:0/18:2(n-6)cis PC, 18:0/18:3(n-3)cis PC, 18:0/20:4(n-6)cis PC, and 18:0/22:6(n-3)cis PC molecules with 40 mol% cholesterol, and the same five pure phosphatidylcholine bilayers have been performed at 303 K. The simulation box of a lipid bilayer contained 96 phosphatidylcholines, 64 cholesterols, and 3840 water molecules (48 phosphatidylcholine molecules and 32 cholesterols per layer and 24 water molecules per phospholipid or cholesterol in each case). The lateral self-diffusion coefficients of the lipids in these systems and mass density profiles with respect to the bilayer normal have been analyzed. It has been found that the lateral diffusion coefficients of phosphatidylcholine molecules increase with increasing number of double bonds in one of the lipid chains, both in pure bilayers and in bilayers with cholesterol. It has been found as well that the lateral diffusion coefficient of phosphatidylcholine molecules of a lipid bilayer with 40 mol% cholesterol is smaller than that for the corresponding pure phosphatidylcholine bilayer.  相似文献   

11.
Alterations in the surface potential difference (delta U) of asolectin planar bilayer lipid membranes were measured following the adsorption of isolated matrix protein (M-protein) or neuraminidase of influenza virus. The method used was based upon measurement of the bilayer lipid membrane capacitance current second harmonic. The delta U dependence on the M-protein and neuraminidase concentration indicates different mechanisms of adsorption of these viral proteins by the lipid bilayer. The conductance (G0) dependence of the bilayer lipid membrane with different compositions on the concentration of isolated surface glycoproteins, hemagglutinin and neuraminidase, M-protein or neuraminidase was investigated. The change in G0 for M-protein was observed only after adsorption saturation had been achieved. Neuraminidase alone does not affect the membrane conductivity. The surface charge and lipid composition of the lipid bilayer influences the adsorption and incorporation of influenza virus M-protein and surface glycoproteins. The reversibility of protein incorporation into the bilayers was investigated by a perfusion technique. The results show reversibility of surface glycoprotein incorporation while M-protein binding appears to be irreversible.  相似文献   

12.
Fourier transform infrared (FTIR) spectroscopy has been used to study, at a molecular level, the interactions between beta-lactoglobulin (BLG), the most abundant globular protein in milk, and some lipids (sphingomyelin, SM; dimyristoylphosphatidylcholine, DMPC; dipalmytoylphosphatidylcholine, DPPC; dimyristoylphosphatidylserine-sodium salt, DMPS; dipalmitoylphosphatidylserine-sodium salt, DPPS) constituting the milk fat globule membrane (MFGM). The interactions were monitored with respect to alteration in the secondary structure of BLG, as registered by the amide I' band, and phospholipid conformation, as revealed by the acyl chain and carbonyl bands. The results show that neither the conformation nor the thermotropism of neutral bilayers containing DMPC or DPPC is affected by BLG. Reciprocally, the secondary structure and thermal behaviour of pure BLG remain the same in the presence of PC. These results suggest that no interaction occurs between PC and BLG, in agreement with previous studies. However, it is found that BLG interacts with neutral bilayers constituted by milk SM lipids, increasing gauche conformers and thus conformational disorder of the lipid acyl chains. This perturbing effect has been attributed to a partial penetration of BLG into the hydrophobic core of the bilayer, which allows hydrophobic interactions between BLG and SM. Moreover, the fact that SM possesses the same headgroup of PC implies that the head group does not prevent the occurrence of BLG-lipid interactions and other lipid regions can control the binding of BLG to lipids. Furthermore, BLG was found to interact electrostatically with charged bilayers containing PS, leading to a rigidification of the lipid hydrocarbon chains and a dehydration of the interfacial region. This last effect suggests that the protein limits the accessibility of water molecules to the interfacial region of the phospholipids by its presence at the membrane surface.  相似文献   

13.
Surface tensions evaluated from molecular dynamics simulations of fully hydrated dipalmitoylphosphatidylcholine bilayers and monolayers at surface areas/lipid of 54, 64, and 80 A2 are uniformly lowered 4-8 dyn/cm upon addition of trehalose in a 1:2 trehalose/lipid ratio. Constant surface tension simulations of bilayers yield the complementary result: an increase in surface area consistent with the surface pressure-surface area (pi-A) isotherms. Hydrogen bonding by trehalose, replacement of waters in the headgroup region, and modulation of the dipole potential are all similar in bilayers and monolayers at the same surface area. These results strongly support the assumption that experimental measurements on the interactions of surface active components such as trehalose with monolayers can yield quantitative insight to their effects on bilayers. The simulations also indicate that the 20-30 dyn/cm difference in surface tension of the bilayer leaflet and monolayer arises from differences in the chain regions, not the headgroup/water interfaces.  相似文献   

14.
The interaction of platelet talin (P-235) with mixtures of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidylserine (DMPS) as well as with pure lipids was studied in reconstituted lipid bilayers. Incorporation of platelet talin into vesicles was achieved by self-assembly during cycles of freeze-thawing of co-dispersions containing vesicles and the purified protein. The yield of protein incorporation as a function of lipid composition was determined by measuring the protein/lipid ratio using protein assay, phosphate determination and gel electrophoresis in parallel. Protein-lipid interactions are monitored by high sensitive differential scanning calorimetry (DSC) measuring (i) the shifts of transition states delta Ts* and delta Tl*, where Ts represents the solidus line, the onset of lipid chain melting, and Tl the liquidus line, the endpoint of chain melting, and (ii) the heats of transition. Cytoplasmic talin differs from a membrane bound form by its ability and mode of lipid interaction. The latter partially penetrates into the hydrophobic region of the bilayer, which renders a low incorporation rate even into neutral lipids. This interaction is greatly enhanced in the presence of charged lipids: a marked shift of Tl occurs due to a selective electrostatic interaction of the protein with the membrane surface. Evidence for a selective binding is also provided by Fourier transform infrared spectroscopy (FTIR). Right-side-out oriented platelet talin can be cleaved by proteinases, which truncate the extrinsic electrostatic binding domain but not the hydrophobic. In addition, reconstituted platelet talin, like in vivo, can be cleaved by thrombin. The interaction of cytoplasmic platelet talin with lipid bilayers is purely electrostatic. Our data suggest that protein reconstitution by freeze-thawing is an equilibrium process and that the protein distribution between the membrane and water is determined by the Nernst distribution law. Consequently, the work of protein transfer from water into the bilayer can be measured as a function of charged lipids.  相似文献   

15.
This report presents the first X-ray diffraction data on diacetylenic phospholipids. The tubule-forming polymerizable lipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC), was studied by low angle X-ray diffraction from partially dehydrated oriented multibilayers in both polymerized and unpolymerized form. Bilayers of this material were found to be highly ordered, yielding as many as 16 orders of lamellar diffraction, in both the polymerized and unpolymerized states. The unit cell dimension was very small for a lipid of this size. In addition to the features usually observed in the electron density profile structure of phospholipid bilayers, the electron-dense diacetylenic portions of the fatty acyl chain produced electron density maxima at two well-defined levels on each side of the bilayer approximately 15 A and 9 A from the bilayer midplane. A model molecular conformation deduced from the one-dimensional electron density map features all-trans acyl chains tilted at approximately 28 degrees from the bilayer normal that are interdigitated with chains of the opposing monolayer by approximately two carbons at the bilayer center. The linear diacetylene moieties on beta- and gamma-chains appear at different positions along the bilayer normal axis and are roughly parallel to the bilayer surface. This model is discussed in terms of a polymerization mechanism.  相似文献   

16.
Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.  相似文献   

17.
Properties of hydrated unsaturated phosphatidylcholine (PC) lipid bilayers containing 40 mol % cholesterol and of pure PC bilayers have been studied. Various methods were applied, including molecular dynamics simulations, self-consistent field calculations, and the pulsed field gradient nuclear magnetic resonance technique. Lipid bilayers were composed of 18:0/18:1(n-9)cis PC, 18:0/18:2(n-6)cis PC, 18:0/18:3(n-3)cis PC, 18:0/20:4(n-6)cis PC, and 18:0/22:6(n-3)cis PC molecules. Lateral self-diffusion coefficients of the lipids in all these bilayers, mass density distributions of atoms and atom groups with respect to the bilayer normal, the C-H and C-C bond order parameter profiles of each phospholipid hydrocarbon chain with respect to the bilayer normal were calculated. It was shown that the lateral self-diffusion coefficient of PC molecules of the lipid bilayer containing 40 mol % cholesterol is smaller than that for a corresponding pure PC bilayer; the diffusion coefficients increase with increasing the degree of unsaturation of one of the PC chains in bilayers of both types (i.e., in pure bilayers or in bilayers with cholesterol). The presence of cholesterol in a bilayer promoted the extension of saturated and polyunsaturated lipid chains. The condensing effect of cholesterol on the order parameters was more pronounced for the double C=C bonds of polyunsaturated chains than for single C-C bonds of saturated chains.  相似文献   

18.
This present article describes a new and simple method for preparing model lipid bilayers. Stable and reproducible surface layers were produced at silica surfaces by co- adsorbing lipid with surfactant at the silica surface from mixed micellar solutions. The adsorption was followed in situ by use of ellipsometry. The mixed micellar solution consisted of a lipid (L-alpha-dioleoyllecithin) and a non-ionic sugar-based surfactant (n-dodecyl-beta-maltoside). The latter showed, by itself, no affinity for the surface and could, therefore, easily be rinsed off the surface after the adsorption step. By first adsorbing from solutions with high lipid and surfactant concentrations and then, in succession, rinsing and re-adsorbing from solutions with lower lipid-surfactant concentrations, a dense-packed lipid bilayer was produced at the silica surface. The same result can be achieved in a one-step process where the rinsing, after adsorption from the concentrated solution, is performed very slowly. The thickness of the adsorbed lecithin bilayer after this treatment found was to be about 44 +/- 3 A, having a mean refractive index of 1.480 +/- 0.004. The calculated surface excess of lipids on silica was about 4.2 mg m(-2), giving an average area per lipid molecule in the two layers of 62 +/- 3 A2. The physical characteristic of the adsorbed bilayer is in good agreement with previously reported data on bulk and surface supported lipid bilayers. However, in contrast to previous investigations, we found no support for the presence of a thicker multi-molecular water layer located between the lipid layer and the solid substrate.  相似文献   

19.
Despite intense study over many years, the mechanisms by which water and small nonelectrolytes cross lipid bilayers remain unclear. While prior studies of permeability through membranes have focused on solute characteristics, such as size, polarity, and partition coefficient in hydrophobic solvent, we focus here on water permeability in seven single component bilayers composed of different lipids, five with phosphatidylcholine headgroups and different chain lengths and unsaturation, one with a phosphatidylserine headgroup, and one with a phosphatidylethanolamine headgroup. We find that water permeability correlates most strongly with the area/lipid and is poorly correlated with bilayer thickness and other previously determined structural and mechanical properties of these single component bilayers. These results suggest a new model for permeability that is developed in the accompanying theoretical paper in which the area occupied by the lipid is the major determinant and the hydrocarbon thickness is a secondary determinant. Cholesterol was also incorporated into DOPC bilayers and X-ray diffuse scattering was used to determine quantitative structure with the result that the area occupied by DOPC in the membrane decreases while bilayer thickness increases in a correlated way because lipid volume does not change. The water permeability decreases with added cholesterol and it correlates in a different way from pure lipids with area per lipid, bilayer thickness, and also with area compressibility.  相似文献   

20.
Phospholipid bilayers were formed on mica using the Langmuir–Blodgett technique and liposome fusion, as a model system for biomembranes. Nanometer-scale surface physical properties of the bilayers were quantitatively characterized upon the different phases of the first leaflets. Lower hydration/steric forces on the bilayers were observed at the liquid phase of the first leaflet than at the solid phase. The forces appear to be related to the low mechanical stability of the lipid bilayer, which was affected by the first leaflet phase. The first leaflet phase also influenced the long-range repulsive forces over the second leaflet. Surface forces, measured using a modified probe with an atomic force microscope, showed that lower long-range repulsive forces were also found at the liquid phase of the first leaflet. Force measurements were performed at 300 mM sodium chloride solution so that the effect of the phase on the long-range repulsive forces could be investigated by reducing the effect of the repulsion between the second-leaflet lipid headgroups on the long-range repulsive forces. Forces were analyzed using the Derjaguin–Landau–Verwey–Overbeek theory so that the surface potential and surface charge density of the lipid bilayers were quantitatively acquired for each phase of the first leaflet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号