首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The purpose of this study was to determine the effect of football equipment and running surface on sprint performance in NCAA Division II football players (n = 68). Players were timed in the 40-yd sprint on an indoor rubberized track (Day 1) and on an outdoor, natural-grass football field (Day 2) wearing either regulation football equipment or shorts and a T-shirt. Each player was assigned randomly to perform 2 trials under each condition on each surface, and the average of the 2 trials was used for analysis. Offensive backs, defensive backs, and linebackers were significantly faster than were offensive and defensive linemen in all trials, and subjects were collapsed into 2 groups, backs and linemen. Football equipment significantly impaired performance on the track (-2.8% +/- 1.7%) and the field (-2.9% +/- 1.8%). The increase in body mass due to the football equipment was significantly greater for backs (7.2% +/- 0.7%) than for linemen (6.5% +/- 1.0%), but produced a significantly greater impairment in sprint performance in linemen (-3.3% +/- 1.1%) as compared with backs (-2.5% +/- 1.5%). Sprint performance was significantly and equivalently impaired when running on grass (backs: -2.5 +/- 1.1%; linemen: -2.8 +/- 1.4%) as compared with the track. Thus, running a 40-yd sprint in football equipment on a natural grass field impairs performance by an average of 5.5% (+/- 2.3%) compared with running indoors with minimal apparel. Football equipment and running surface significantly impair sprint performance in college football players, the effect being greater in linemen than in backs, and is likely related to differences in muscle strength/power and body fat.  相似文献   

2.
The purpose of this study was to compare normative data from present Division I National Collegiate Athletic Association football teams to those from 1987. Players were divided into 8 positions for comparisons: quarterbacks (QB), running backs (RB), receivers (WR), tight ends (TE), offensive linemen (OL), defensive linemen (DL), linebackers (LB), and defensive backs (DB). Comparisons included height, body mass, bench press and squat strength, vertical jump, vertical jump power, 40-yd-dash speed, and body composition. Independent t-tests were used to analyze the data with level of significance set at p < 0.01. Significant differences (p < 0.01) were found in 50 of 88 comparisons. From 1987 until 2000, Division I college football players in general have become bigger, stronger, faster, and more powerful. Further research is warranted to investigate if these trends will continue.  相似文献   

3.
The purpose of this study was to present a profile of body size and composition of National Football League (NFL) players prior to the start of the regular season. Fifty-three members of the Indianapolis Colts professional football team were measured for height, body mass, and percentage body fat using the BOD POD air-displacement plethysmography system during summer camp of the 2003 football season. These data were categorized by position for comparison with previous studies of NFL football players. The relationships observed were as follows (= represents nonsignificant; > represents p < or = 0.05): Height: Offensive Line = Defensive Line = Quarterbacks/Kickers/Punters = Tight Ends > Linebackers > Running Backs = Wide Receivers = Defensive Backs. Body Mass: Offensive Line = Defensive Line > Tight Ends = Linebackers > Running Backs = Quarterbacks/ Kickers/Punters > Wide Receivers = Defensive Backs. Percentage Body Fat: Offensive Line > Defensive Line > Quarterbacks/ Kickers/Punters = Linebackers = Tight Ends > Running Backs = Wide Receivers = Defensive Backs. Comparisons to teams in the 1970s indicate that body mass has increased only for offensive and defensive linemen; however, height and body fat among player positions have not dramatically changed. Furthermore, the body mass index is not an accurate measure or representation of body fat or obesity in NFL players. These data provide a basic template for size profiles and differences among various positions and allow comparisons with other studies for changes in the NFL over the past 3 decades.  相似文献   

4.
Iguchi, J, Yamada, Y, Ando, S, Fujisawa, Y, Hojo, T, Nishimura, K, Kuzuhara, K, Yuasa, Y, and Ichihashi, N. Physical and performance characteristics of Japanese division 1 collegiate football players. J Strength Cond Res 25(12): 3368-3377, 2011-This study aimed to establish the physical and performance characteristics of football players in the Japanese Division 1 collegiate football program and perform a comparison of these characteristics between Japanese (n = 208) and US Division 1 football players (n = 797). The following comparisons were made: (a) between a higher-ranked university team vs. a lower-ranked university team in Japan, (b) between different playing positions in Japan, (c) between starters and nonstarters in Japan, and (d) between playing positions in Japan vs. those in the United States. The results of this study suggest that players in the higher-ranked university team were heavier, stronger in back squat, jumped higher, and had greater power than those on the lower-ranked team. Furthermore, linemen were generally characterized by larger size, greater strength, and more fat as compared with backs. On the other hand, backs tended to be faster, smaller in physical size, have higher vertical jump height, and show greater relative strength than linemen did. Starters were taller, heavier, stronger, had more powerful, and more fat-free mass than nonstarters. Finally, our results revealed that players in the United States were superior to players in Japan in all body status comparisons (p < 0.01). This study revealed that performance and superior body composition are essential for the success of a football player. Power and strength seem to be key factors in defining good football performance.  相似文献   

5.
Performance data for 261 NCAA Division 1A collegiate football players were analyzed to determine if player position, body weight, body fat, and training time were correlated with changes in performance in the following events: power clean (PC), bench press (BP), squat (SQ), vertical jump (VJ), 40-yd dash (40yd), and 20-yd shuttle (20yd). Individual positions were combined into the following groups: (A) wide receivers, defensive backs, and running backs, (B) linebackers, kickers, tight ends, quarterbacks, and specialists, and (C) linemen. Increases in body weight were positively correlated with increases in BP and PC performance for all groups. Increases in body fat were negatively correlated with performance in the PC and VJ for all groups. For group C, increases in body fat were also negatively correlated with performance in the 40yd and 20yd. Group and training time exhibited no linear relationship with performance in any of the tested events. No linear relationships were observed between the independent variables and performance in the SQ. When individual training data were analyzed longitudinally, a nonlinear increase in performance in the PC, BP, and SQ was observed as training time increased, with the greatest rate of change occurring between the first and second semesters of training.  相似文献   

6.
7.
The performance of 326 collegiate football players attending the 2000 National Football League combine was studied to determine whether draft status could be predicted from performance measurements. The combine measured height and weight along with 9 performance tests: 225-lb bench press test, 10-yd dash, 20-yd dash, 40-yd dash, 20-yd proagility shuttle, 60-yd shuttle, 3-cone drill, broad jump, and vertical jump. Prediction equations were generated for 7 position categories with varying degrees of accuracy-running backs (RBs), r(2) = 1.00; wide receivers (WRs), r(2) = 1.00; offensive linemen, r(2) = 0.70; defensive linemen, r(2) = 0.59; defensive backs (DBs), r(2) = 1.00; linebackers, r(2) = 0.22; and quarterbacks, r(2) = 0.84. The successes of the prediction equations are related to the ability of the individual tests to assess the necessary skills for each position. This study concludes that the combine can be used to accurately predict draft status of RBs, WRs, and DBs. The equations can also be used as a good to fair estimate for other positions.  相似文献   

8.
The purpose of this study was to examine performance differences between drafted and nondrafted athletes (N = 321) during the 2004 and 2005 National Football League (NFL) Combines. We categorized players into one of 3 groups: Skill, Big skill, and Linemen. Skill players (SP) consisted of wide receivers, cornerbacks, free safeties, strong safeties, and running backs. Big skill players (BSP) included fullbacks, linebackers, tight ends, and defensive ends. Linemen (LM) consisted of centers, offensive guards, offensive tackles, and defensive tackles. We analyzed player height and mass, as well as performance on the following combine drills: 40-yard dash, 225-lb bench press test, vertical jump, broad jump, pro-agility shuttle, and the 3-cone drill. Student t-tests compared performance on each of these measures between drafted and nondrafted players. Statistical significance was found between drafted and nondrafted SP for the 40-yard dash (P < 0.001), vertical jump (P = 0.003), pro-agility shuttle (P < 0.001), and 3-cone drill (P < 0.001). Drafted and nondrafted BSP performed differently on the 40-yard dash (P = 0.002) and 3-cone drill (P = 0.005). Finally, drafted LM performed significantly better than nondrafted LM on the 40-yard dash (P = 0.016), 225-lb bench press (P = 0.003), and 3-cone drill (P = 0.005). Certified strength and conditioning specialists will be able to utilize the significant findings to help better prepare athletes as they ready themselves for the NFL Combine.  相似文献   

9.
The purpose of this study was to compare selected physical fitness and performance variables between National Collegiate Athletic Association (NCAA) Division I and II football players. The subjects included offensive and defensive starters, excluding kickers and punters from 26 NCAA Division I and 23 Division II teams. Offensive players were grouped and compared by the following positions: quarterback, running back, wide receiver, tight end, and line. Defensive players were grouped and compared by the following positions: line, linebackers, and backs. Division I players were better in 58 of 117 comparisons (p < or = 0.01). Division II players were not found to be better in any of the variables studied.  相似文献   

10.
We assessed body composition (height, body mass, body mass index, body fat by densitometry, fat mass, fat-free mass, and lean/fat ratio) and performance (10- and 40-yd sprints, pro shuttle run, vertical jump, sit and reach, and bench press) in 77 National Collegiate Athletic Association Division III football players. Data were analyzed by position and playing status. Significant differences (p 相似文献   

11.
The relationships between football playing ability (FPA) and selected anthropometric and performance measures were determined among NCAA Division I-A football players (N = 40). Football playing ability (determined by the average of coaches' rankings) was significantly correlated with vertical jump (VJ) in all groups (offense, defense, and position groups of wide receiver-defensive back, offensive linemen-defensive linemen, and running back-tight end-linebacker). Eleven of 50 correlations (groups by variables), or 22%, were important for FPA. Five of the 11 relationships were related to VJ. Forward stepwise regression equations for each group explained over half of the criterion variable, FPA, as indicated by the R(2) values for each model. Vertical jump was the prime predictor variable in the equations for all groups. The findings of this study are discussed in relation to the specificity hypothesis. Strength and conditioning programs that facilitate the capacity for football players to develop forceful and rapid concentric action through plantar flexion of the ankle, as well as extension of the knee and hip, may be highly profitable.  相似文献   

12.
This study investigated the physiological, anthropometric, and skill characteristics of rugby league players and determined the relationship between physical fitness and playing ability in these athletes. Eighty-six rugby league players (mean +/- SD age, 22.5 +/- 4.9 years) underwent measurements of standard anthropometry (height, body mass, and sum of 4 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (L run), and estimated maximal aerobic power (multistage fitness test). In addition, 2 expert coaches independently assessed the playing ability of players using standardized skill criteria. First-grade players had significantly greater (p < 0.05) basic passing and ball-carrying ability and superior skills under fatigue, tackling and defensive skills, and evasion skills (i.e., ability to beat a player and 2 verse 1 skills) than second-grade and third-grade players. While no significant (p > 0.05) differences were detected among playing levels for body mass; skinfold thickness; height; 10-, 20-, or 40-m speed; agility; vertical jump height; or estimated maximal aerobic power, all the physiological and anthropometric characteristics were significantly (p < 0.05) associated with at least 1 measure of playing ability. The results of this study demonstrate that selected skill characteristics but not physiological or anthropometric characteristics discriminate between successful and less successful rugby league players. However, all physiological and anthropometric characteristics were related to playing ability. These findings suggest that while physiological and anthropometric characteristics do not discriminate between successful and less successful rugby league players, a high level of physical fitness contributes to effective playing ability in these athletes. A game-specific training program that incorporates both physical conditioning and skills training may facilitate a greater transfer of physical fitness to competitive performances in rugby league.  相似文献   

13.
14.
The aim of the study was to investigate the relationships between specific anthropometric (9 skinfolds, 13 girths, 8 lengths and 8 breadths), body composition (body fat %, fat free mass [FFM], fat mass [FM]) parameters and bone mineral parameters (bone mineral density [BMD], bone mineral content [BMC) in young rhythmic gymnasts and same age controls. Eighty nine 7-8-year-old girls participated in this study and were divided to the rhythmic gymnast's (n = 46) and control (n = 43) groups. Body composition was determined by dual energy X-ray absorptiometry (FFM, FM, body fat %, BMD and BMC). Body fat % and FM were lower and BMD and BMC values at lumbar spine (L2-L4) and femoral neck were higher in rhythmic gymnasts compared with controls. All measured skinfold thicknesses were thicker in controls. In girths, lengths and widths there were only few significant differences between the groups. Stepwise multiple regression analysis indicated that skinfold thicknesses (supraspinale and medial calf) influenced L2-L4 BMD only in controls 38.2% (R2x100). Supraspinale and iliac crest skinfold thicknesses characterised L2-L4 BMC 43.9% (R2x100). Calf girths influenced BMD in L2-L4 52.3% (R2x100) in controls. BMC in L2-L4 was dependent only on mid-thigh girths 35.9% (R2x100). BMD in L2-L4 was dependent on tibiale-laterale height 30.0% (R2x100). Biiliocristal breadths together with sitting height characterised BMC in L2-L4 BMD 62.3% (R2x100). In conclusion, we found that the relationships between anthropometry, body composition and bone parameters in young rhythmic gymnasts are weak. In control group first of all lower body anthropometric parameters significantly correlated with BMD and BMC in spine.  相似文献   

15.
In American football, impacts to the helmet and the resulting head accelerations are the primary cause of concussion injury and potentially chronic brain injury. The purpose of this study was to quantify exposures to impacts to the head (frequency, location and magnitude) for individual collegiate football players and to investigate differences in head impact exposure by player position. A total of 314 players were enrolled at three institutions and 286,636 head impacts were recorded over three seasons. The 95th percentile peak linear and rotational acceleration and HITsp (a composite severity measure) were 62.7g, 4378rad/s(2) and 32.6, respectively. These exposure measures as well as the frequency of impacts varied significantly by player position and by helmet impact location. Running backs (RB) and quarter backs (QB) received the greatest magnitude head impacts, while defensive line (DL), offensive line (OL) and line backers (LB) received the most frequent head impacts (more than twice as many than any other position). Impacts to the top of the helmet had the lowest peak rotational acceleration (2387rad/s(2)), but the greatest peak linear acceleration (72.4g), and were the least frequent of all locations (13.7%) among all positions. OL and QB had the highest (49.2%) and the lowest (23.7%) frequency, respectively, of front impacts. QB received the greatest magnitude (70.8g and 5428rad/s(2)) and the most frequent (44% and 38.9%) impacts to the back of the helmet. This study quantified head impact exposure in collegiate football, providing data that is critical to advancing the understanding of the biomechanics of concussive injuries and sub-concussive head impacts.  相似文献   

16.
Gender differences in fat patterning in children living in Ankara   总被引:3,自引:0,他引:3  
Body composition is an excellent indicator for assessing obesity and nutritional status of both individuals and populations. Youth obesity has important health and social implications, because a large proportion of adult obesity has its origin in childhood. Numerous studies report that adverse levels of cardiovascular diseases risk factors are associated with adiposity in children. Concerning the Turkish population there is up to now only limited information with regard to adiposity in children. The aim of this study was therefore to determine the anthropometric and body composition characteristics and to investigate sex differences in fat patterning including fat distribution in a group of children living in Ankara. The present study evaluated the body composition of 332 boys and 269 girls aged between 8 and 11 years, attending public schools. It was carried out by a cross-sectional study and was focused on that anthropometric variables, which reflect body fat and fat-free mass. Anthropometric measurements including height, weight, triceps and subscapular skinfolds thickness were carried out on these children. The body mass index (BMI) was also calculated. The measurements were used to estimate the two-compartment model of body composition: fat-free mass (FFM) and body fat (BF) from skinfold equations. The mean fat percentage in boys is highest at 11 years (16.8%) and lowest at 10 years (15.6%). In girls these figures come to 18.2% and 17.1%, respectively. Girls of these age groups have a significantly larger percentage of body fat and skinfold thickness. At this young age there is therefore clear evidence of sexual dimorphism in fat patterning, as girls are showing a greater subcutaneous adiposity, which is mainly contributed by the triceps fat. The body fat (kg) increases in both sexes all over the investigated age groups. The Pearson correlation matrix showed a high significant relation between the anthropometric measurements (p < 0.01). The present study confirms the findings that sexual dimorphism of fat patterning in children is to be seen in the age of 8 - 11 years. It furthermore presents basic data of body composition, which could serve as reference data in other studies on the Turkish population.  相似文献   

17.
The effects of 35 weeks of extra-curricular, mainly aerobic, dynamic physical activity were analysed in overweight and obese 7-year-old boys contrasted with control groups. Body composition was estimated by using the body mass index (BMI) and skinfold thicknesses. Overweight or obesity was defined according to the suggestions of Cole and associates (2000). The activity program consisted of swimming and water games, folk dance, and soccer. Data were collected four times between September 2003 and October 2004. Thirty-one overnight or obese boys volunteered to participate in the activity program (weekly, to physical classes of 45 min. plus three extra-curricular activity sessions of 60 min. duration). The control subjects were 43 overweight or obese boys, and 75 non-overweight and non-obese ones. The controls had only two curricular physical education classes every week. Physical performance capacity was tested by 30 m dash, 400 m run, standing long jump, and fist-ball throw. Body fat content estimated by taking the sum of five skinfolds decreased significantly during the 35-week training program. However, body weight as well as skinfold thicknesses increased significantly during the four month non-active period that followed. Physical performance improved during the test period, but deteriorated between the third and fourth data collections. BMI, as well as the sum of five skinfolds increased in both control groups.Physical performance decreased in the overweight control subjects and increased moderately in the non obese ones. We inferred that more vigorous habitual exercise alone, i.e., without a program of dietary control, though effective, could not efficiently stabilise body fat, still less achieve a lasting reduction of it. Obese, but also overweight subjects need long term exercise programs of sufficient intensity, duration and frequency, plus dietary measures, to get rid of excess body fat.  相似文献   

18.
In the present investigation, we have attempted to identify regions of the genome in which “obesity genes” potentially reside using robust sib-pair linkage analysis. Data were collected on 1,628 individuals in 301 nuclear families residing in the environs of Québec City during the period 1978–1981. In addition to traditional blood group antigens and enzyme polymorphisms, several phenotypes in the obesity domain that are associated with increased morbidity were assessed, including measures relating to heaviness (i.e., the body mass index), body composition and nutrient partitioning (i.e., % body fat), and regional fat distribution without and with standardization for total fat mass (i.e., the sum of six skinfold thicknesses, and the ratio of the sums of trunk to extremity skinfold thicknesses). Three consistent patterns of potential linkage relationships with obesity phenotypes were revealed in these data, involving the marker loci adenosine deaminase, the Kell blood group antigen, and esterase D, which identify chromosomal regions 20q13, 7q33, and 13q14, respectively. Other potential linkages also were identified in the short arm of chromosome 1, interesting because of the presence of the db and fa loci on homologous regions of chromosome 1 in mouse and rat models of obesity, respectively. Each of the tentative linkage relationships reported here warrant follow-up using alternative methods and require replication in independent studies.  相似文献   

19.
To investigate the positional physical requirements necessary to be drafted into the National Football League (NFL), data from the annual NFL combine over the years 2005-2009 were examined. Only those players invited to the combine and subsequently drafted in the same year (n = 1,136) were included in the study. Data from 8 combine physical performance tests were examined for 15 positions. Combine measures evaluated for the center, cornerback, defensive end, defensive tackle, free safety, fullback, inside linebacker, offensive guard, offensive tackle, outside linebacker, quarterback, running back, strong safety, tight end, and wide receiver positions were the 9.1-, 18.3-, and 36.6-m sprints, the vertical and broad jumps, the 18.3-m shuttle run, the 3-cone drill, and the 102.1-kg bench press for maximum repetitions and, from this, a predicted measure of 1 repetition maximum. A 1-way analysis of variance detected differences in all 9 performance measures (p < 0.01). Post hoc independent t-tests indicated that over most tests many positions exhibited outcomes significantly different from most other positions. Generally, lineman positions performed inferiorly in sprint, jump and change-of-direction ability measures and superiorly in the upper body strength measures. Conversely, defensive back positions were the worst performers in the upper body strength test, and wide receivers and defensive backs were the best performers in all other measures. In general, offensive and defensive positions that commonly compete directly against one another display similar physical characteristics. Any advantages (statistically significant and not) between positions in direct competition were consistently in favor of defensive positions. The results of the present research present position-specific profiles for each of 15 positions. Coaches and practitioners will be able to use the findings of this research to better prepare athletes for entry into the NFL.  相似文献   

20.
Maninder Kaur  Indu Talwar 《HOMO》2011,62(5):374-385
The aim of the present cross-sectional study is to describe and compare age related changes in body composition and fat patterning among rural and urban Jat females of Haryana State, India. A total of 600 females (rural = 300, urban = 300), ranging in age from 40 to 70 years were selected by the purposive sampling method. Body weight, height, two circumferences (waist and hip) and skinfold thickness at five different sites (biceps, triceps, calf, subscapular, and supra-iliac) were taken on each participant. To study total adiposity, indices such as body mass index (BMI), grand mean thickness (GMT), total body fat and percentage fat were analyzed statistically. The fat distribution pattern was studied using waist/hip ratio, subscapular/triceps ratio and responsiveness of five skinfold sites towards accumulation of fat at different sites with advancing age. Results indicate a decline in almost every dimension including level of fatness between the mid-fourth and mid-fifth decades of life in both rural and urban females. Urban Jat females were heavier (57.36 kg vs. 56.07 kg, p > 0.05) and significantly taller (1553.3 mm vs. 1534.5 mm, p < 0.001) than their rural counterparts. Urban females also exhibited higher mean values for both the circumferences, five skinfold thicknesses as well as for lean body mass, total fat and percentage fat than the rural females. This is also evident from their higher mean values for body mass index and grand mean thickness. Waist/hip ratio values in rural and urban females showed upper body fat predominance, with urban females having relatively more abdominal fat. Results of subscapular/triceps ratio showed that rural and urban females gained proportionally similar amounts of subcutaneous fat at trunk and extremity sites until 45 years of age. Subsequently trunk skinfolds increased relatively more in thickness. The magnitude of this increase was comparatively greater in rural females up to 55 years and among urban females from 55 to 70 years. The profiles of subcutaneous fat accumulation and sensitivity of each skinfold site also revealed more fat deposition in the trunk region compared to extremities in both rural and urban females. The present study demonstrated differential rates of fat redistribution among rural and urban females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号