首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Na YH  He Y  Shuai X  Kikkawa Y  Doi Y  Inoue Y 《Biomacromolecules》2002,3(6):1179-1186
The miscibility and phase behavior of two stereoisomer forms of poly(lactide) (PLA: poly (L-lactide) (PLLA) and poly(DL-lactide) (PDLLA)) blends with poly(epsilon-caprolactone)-b-poly(ethylene glycol) (PCL-b-PEG) and PCL-b-monomethoxy-PEG (PCL-b-MPEG) block copolymers have been investigated by differential scanning calorimetry (DSC). The DSC thermal behavior of both the blend systems revealed that PLA is miscible with the PEG segment phase of PCL-b-(M)PEG but is still immiscible with its PCL segment phase although PCL was block-copolymerized with PEG. On the basis of these results, PCL-b-PEG was added as a compatibilizer to PLA/PCL binary blends. The improvement in mechanical properties of PLA/PCL blends was achieved as anticipated upon the addition of PCL-b-PEG. In addition, atomic force microscopy (AFM) measurements have been performed in order to study the compositional synergism to be observed in mechanical tests. AFM observations of the morphological dependency on blend composition indicate that PLA/PCL blends are immiscible but compatible to some extent and that synergism of compatibilizing may be maximized in the compositional blend ratio before apparent phase separation and coarsening.  相似文献   

2.
A series of novel amphiphilic triblock copolymers of poly(ethyl ethylene phosphate) and poly(-caprolactone) (PEEP-PCL-PEEP) with various PEEP and PCL block lengths were synthesized and characterized. These triblock copolymers formed micelles composed of a hydrophobic core of poly(-caprolactone) (PCL) and a hydrophilic shell of poly(ethyl ethylene phosphate) (PEEP) in aqueous solution. The micelle morphology was spherical, determined by transmission electron microscopy. It was found that the size and critical micelle concentration values of the micelles depended on both hydrophobic PCL block length and PEEP hydrophilic block length. The in vitro degradation characteristics of the triblock copolymers were investigated in micellar form, showing that these copolymers were completely biodegradable under enzymatic catalysis of Pseudomonas lipase and phosphodiesterase I. These triblock copolymers were used for paclitaxel (PTX) encapsulation to demonstrate the potential in drug delivery. PTX was successfully loaded into the micelles, and the in vitro release profile was found to be correlative to the polymer composition. These biodegradable triblock copolymer micelles are potential as novel carriers for hydrophobic drug delivery.  相似文献   

3.
Completely renewable resource-based, degradable composites of poly(l-lactide) and Nodax [poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)] were prepared by a melt blending procedure. oligoNodax-b-poly(l-lactide) diblock copolymers were synthesized and their use as compatibilizers in these melt blends was investigated. The block copolymers were prepared from microbially produced Nodax polyhydroxyalkanoate by a two-step transesterification and macroinitiator ring opening polymerization method. Addition of Nodax increased the notched Izod impact resistance of the binary blends compared to that of PLLA homopolymer (44+/-6 J m(-1) versus 22+/-2 J m(-1), respectively). Further addition of the oligoNodax-b-poly(l-lactide) block copolymers to form ternary blends resulted in composites with improved dispersion and decreased Nodax particle size, but no additional improvement in the notched Izod impact properties. Significant Nodax degradation during processing coupled with a high Nodax entanglement molecular weight, as well as crystallization and low impact resistance of the Nodax dispersed phase are implicated as major factors impeding further toughening.  相似文献   

4.
Sodium montmorillonite was incorporated into a poly(ε-caprolactone)–starch blend by means of a ball mill. The structural organization and physical (mechanical, thermal and barrier) properties were analyzed and correlated with the milling conditions. Scanning electron microscopy and X-ray characterization show that the milling process can improve the compatibilization between the PCL and the starch phases, while promotes the dispersion of clay minerals at nanometric level. The milling time strongly influences the mechanical and barrier properties. In particular, the best results in terms of elastic modulus and permeability coefficient were achieved with a complete delamination of the pristine clay structure. In summary, the milling process not only has demonstrated to be a promising compatibilization method for immiscible PCL–starch blends, but it can be also used to improve the dispersion of nanoparticles into the polymer blends.  相似文献   

5.
New high-molecular-weight hydrophobic/hydrophilic segmented copolymers of poly(ester ether carbonate) structure, containing poly(epsilon-caprolactone) (PCL) and poly(ethylene glycol) (PEG) segments in their main chain, were synthesized and characterized. These copolymers were obtained by a two-step chain-extension reaction carried out in the presence of alpha,omega-dihydroxy-oligoPCL of molecular weight 1250 and PEG samples of molecular weight 150, 400, 600, 1000, and 2000. The molecular structures of all synthesized materials were characterized by means of (1)H NMR and (13)C NMR spectroscopy, their molecular weights were determined by means of size exclusion chromatography, and their thermal properties were obtained by means of differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The poly(ester ether carbonate)s of this study are partly or totally miscible at least up to 50 wt % with poly(vinyl chloride) (PVC) and could be used to produce flexible PVC formulations. The miscibility between PVC and the poly(ester ether carbonate)s reported in this paper was investigated by means of DSC and DMA analysis. PVC blends were also analyzed by determining their swellability and the amount of extractables in aqueous media. By comparison purposes, the chain-extension product of PCL1250, that is, PCL polycarbonate, was also synthesized and characterized. The results obtained demonstrated that the copolymers with shortest PEG segment length, i.e. PEG150, 400, and 600, give the best results in terms of miscibility with PVC and lead to blends with maximum resistance to extraction by water. Therefore, they represent, in principle, good substitutes for low-molecular-weight, leachable PVC plasticizers, such as di(ethylhexyl) phthalate.  相似文献   

6.
Soluble supramolecular inclusion complexes were formed by threading alpha-cyclodextrin (alpha-CD) molecules over poly(ethylene glycol) (PEG) and poly(epsilon-caprolactone) (PCL) chains of ternary block copolymers of PEG, PCL and polyethylenimine (PEI). Characteristic shifts of PCL absorptions in FTIR, (1)H NMR and UV spectra strongly suggest that alpha-CD is threaded over PEG and PCL blocks. Due to the reduced hydrophobic interaction between PCL blocks, the resulting supramolecular complexes displayed a dramatically increased solubility, in comparison with the ternary block copolymers. Their ability to complex DNA was almost as efficient as that of branched PEI 25 kDa, as shown in the ethidium bromide fluorescence quenching experiments. Resulting DNA polyplexes displayed a size of around 200 nm and a neutral surface charge. Microscopy studies in 3T3 fibroblasts revealed an efficient cellular uptake. Transfection efficiencies of inclusion complexes were in the same order of magnitude as PEI. In contrast to PEI a 100x lower toxicity was observed by MTT-assay, allowing the administration of nitrogen-to-phosphate ratios of up to 20. These new gene delivery systems merit further characterization under in vivo conditions.  相似文献   

7.
Hydrogels with nanoscale structure were synthesized using amphiphilic poly(epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) (PCL-b-PEO-b-PCL) triblock copolymers. Small-angle X-ray scattering (SAXS) studies show that the block copolymers form 30-40 nm structures in aqueous solution and that these patterns are retained, with some increase in length scale, following electron beam cross-linking. Lamellar nanostructures were observed by SAXS and atomic force microscopy (AFM), with SAXS indicating cylindrical structure as the block lengths become more different in length. It is demonstrated through Fourier transform infrared spectroscopy (FTIR), mass loss, and differential scanning calorimetry (DSC) that the PCL can be completely removed by hydrolysis in NaOH(aq) to form porous PEO hydrogels. These hydrogels retain active functional groups following PCL removal that serve as sites for further chemical modification.  相似文献   

8.
He C  Sun J  Deng C  Zhao T  Deng M  Chen X  Jing X 《Biomacromolecules》2004,5(5):2042-2047
Poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymers PEG-PCL were synthesized by ring-opening polymerization of epsilon-caprolactone using monomethoxy poly(ethylene glycol) as the macroinitiator and calcium ammoniate as the catalyst. Obvious mutual influence between PEG and PCL crystallization was studied by altering the relative block length. Fixing the length of the PEG block (Mn = 5000) and increasing the length of the PCL block, the crystallization temperature of the PCL block rose gradually from 1 to about 35 degrees C while that of the PEG block dropped from 36 to -6.6 degrees C. Meanwhile, the melting temperature of the PCL block went up from 30 to 60 degrees C, while that of the PEG block declined from 60 to 41 degrees C. If the PCL block was longer than the PEG block, the former would crystallize first when cooling from a molten state and led to obviously imperfect crystallization of PEG and vice versa. And they both crystallized at the same temperature, if their weight fractions were equal. We found that the PEG block could still crystallize at -6.6 degrees C even when its weight fraction is only 14%. A unique morphology of concentric spherulites was observed for PEG5000-PCL5000. According to their morphology and real-time growth rates, it is concluded that the central and outer sections in the concentric spherulites were PCL and PEG, respectively, and during the formation of the concentric spherulite, the PEG crystallized quickly from the free space of the PCL crystal at the earlier stage, followed by outgrowing from the PCL spherulites in the direction of right angles to the circle boundaries until the entire area was occupied.  相似文献   

9.
Poly(L-lactide)-based microspheres having cationic or anionic surfaces were prepared using polydepsipeptide-block-poly(L-lactide)s as surfactants. Polydepsipeptide-block-poly(L-lactide)s having amino or carboxylic acid groups on their side chains were synthesized through anionic ring-opening polymerizations of L-lactide using the corresponding protected polydepsipeptides as macroinitiators and consequent deprotections. Since these amphiphilic copolymers consisting of hydrophobic segments and hydrophilic segments with amino or carboxylic acid groups could be converted to cationic or anionic block copolymers, they could act as surfactants preparing poly(L-lactide)-based microspheres by an oil-in-water emulsion method. The amount of ionic groups located on the surfaces of the obtained microspheres was found to increase with increasing the feed of charged polydepsipeptide-block-poly(L-lactide)s in the blend of poly(L-lactide) and block copolymers. The average diameters of the dried microspheres estimated by scanning electron microscopy were found to decrease with an increase in feed of block copolymers in polymer blends.  相似文献   

10.
Narain R  Armes SP 《Biomacromolecules》2003,4(6):1746-1758
We report the facile preparation of a range of novel, well-defined cyclic sugar methacrylate-based polymers without recourse to protecting group chemistry. 2-Gluconamidoethyl methacrylate (GAMA) and 2-lactobionamidoethyl methacrylate (LAMA) were prepared directly by reacting 2-aminoethyl methacrylate with D-gluconolactone and lactobionolactone, respectively. Homopolymerization of GAMA and LAMA by atom transfer radical polymerization (ATRP) gave reasonably low polydispersities as judged by aqueous gel permeation chromatography. A wide range of sugar-based block copolymers were prepared using near-monodisperse macroinitiators based on poly(ethylene oxide) [PEO], poly(propylene oxide) [PPO], or poly(e-caprolactone) [PCL] and/or by sequential monomer addition of other methacrylic monomers such as 2-(diethylamino)ethyl methacrylate [DEA], 2-(diisopropylaminoethyl methacrylate [DPA], or glycerol monomethacrylate [GMA]. The reversible micellar self-assembly of selected sugar-based block copolymers [PEO23-GAMA50-DEA100, PEO23-LAMA30-DEA50, PPO33-GAMA50, and PPO33-LAMA50] was studied in aqueous solution as a function of pH and temperature using dynamic light scattering, transmission electron microscopy, surface tensiometry, and 1H NMR spectroscopy.  相似文献   

11.
A series of fluorinated diblock and triblock copolymers of poly(epsilon-caprolactone) and poly(heptadecafluorodecylacrylate) were prepared by combining ring-opening polymerization of epsilon-CL and atom transfer radical polymerization of the acrylate. These copolymers with well-controlled molecular weight and composition were characterized by (1)H NMR spectroscopy and used as stabilizers for the dispersion ring-opening polymerization of epsilon-CL in supercritical carbon dioxide. The effect of composition and architecture of the polymeric stabilizers on the stabilization of PCL microspheres was investigated. Finally, purification of PCL was successfully implemented by reactive supercritical fluid extraction of the tin catalyst.  相似文献   

12.
"Stealth" nanoparticles made from polymer micelles have been widely explored as drug carriers for targeted drug delivery. High stability (i.e., low critical micelle concentration (CMC)) is required for their intravenous applications. Herein, we present a "core-surface cross-linking" concept to greatly enhance nanoparticle's stability: amphiphilic brush copolymers form core-surface cross-linked micelles (nanoparticles) (SCNs). The amphiphilic brush copolymers consisted of hydrophobic poly(epsilon-caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) or poly(2-(N,N-dimethylamino)ethyl methacrylate) (PDMA) chains were synthesized by macromonomer copolymerization method and used to demonstrate this concept. The resulting SCNs were about 100 times more stable than micelles from corresponding amphiphilic block copolymers. The size and surface properties of the SCNs could be easily tailored by the copolymer's compositions.  相似文献   

13.
The amino poly(trimethylene carbonate)-NHt-Boc (PTMC-NHt-Boc) and poly(epsilon-caprolactone)-NH -Boc (PCL-NHt-Boc) were synthesized by ring-opening polymerization (ROP) of TMC or CL and subsequently deprotected into the corresponding PTMC-NH2 and PCL-NH2. These functional homopolymers were used as macroinitiators for the ROP of gamma-benzyl-L-glutamate N-carboxyanhydride (BLG), consequently, giving the respective diblock copolymers PTMC-b-PBLG and PCL-b-PBLG in almost quantitative yields. The (co)polymers have been characterized by NMR and SEC analyses. DSC and IR studies confirmed the block structure of the copolymers and highlighted a phase separation between the rigid peptide (alpha-helix conformation) and the more flexible polyester segments. The self-assembly and the degradation behaviors of the copolymers depended on the nature of the polyester block and on the copolymer composition. Nanoparticles obtained from PBLG block copolymers were twice smaller ( RH < 100 nm) than those formed from PTMC and PCL homopolymers. Finally, their enzymatic degradation revealed that PTMC nanoparticles degraded faster than those made of PCL.  相似文献   

14.
Amphiphilic diblock copolymers, Sz6 and Sz12, consisting of a poly(dimethylsiloxane) block (average degree of polymerisation?=?132) and a PEGylated-fluoroalkyl modified polystyrene block (Sz, average degree of polymerisation?=?6, 12) were prepared by atom transfer radical polymerization (ATRP). Coatings were obtained from blends of either block copolymer (1-10 wt%) with a poly(dimethylsiloxane) (PDMS) matrix. The coating surface presented a simultaneous hydrophobic and lipophobic character, owing to the strong surface segregation of the lowest surface energy fluoroalkyl chains of the block copolymer. Surface chemical composition and wettability of the films were affected by exposure to water. Block copolymer Sz6 was also blended with PDMS and a 0.1 wt% amount of multiwall carbon nanotubes (CNT). The excellent fouling-release (FR) properties of these new coatings against the macroalga Ulva linza essentially resulted from the inclusion of the amphiphilic block copolymer, while the addition of CNT did not appear to improve the FR properties.  相似文献   

15.
In this study, biodegradable poly(ε-caprolactone) (PCL) nanofibers (PCL-NF), collagen-coated PCL nanofibers (Col-c-PCL), and titanium dioxide-incorporated PCL (TiO2-i-PCL) nanofibers were prepared by electrospinning technique to study the surface and structural compatibility of these scaffolds for skin tisuue engineering. Collagen coating over the PCL nanofibers was done by electrospinning process. Morphology of PCL nanofibers in electrospinning was investigated at different voltages and at different concentrations of PCL. The morphology, interaction between different materials, surface property, and presence of TiO2 were studied by scanning electron microscopy (SEM), Fourier transform IR spectroscopy (FTIR), contact angle measurement, energy dispersion X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). MTT assay and cell adhesion study were done to check biocompatibilty of these scaffolds. SEM study confirmed the formation of nanofibers without beads. FTIR proved presence of collagen on PCL scaffold, and contact angle study showed increment of hydrophilicity of Col-c-PCL and TiO2-i-PCL due to collagen coating and incorporation of TiO2, respectively. EDX and XPS studies revealed distribution of entrapped TiO2 at molecular level. MTT assay and cell adhesion study using L929 fibroblast cell line proved viability of cells with attachment of fibroblasts over the scaffold. Thus, in a nutshell, we can conclude from the outcomes of our investigational works that such composite can be considered as a tissue engineered construct for skin wound healing.  相似文献   

16.
Cross-linkable di- and triblock copolymers of poly(epsilon-caprolactone) (PCL) and monomethoxyl poly(ethylene glycol) (MPEG) were synthesized. These amphiphilic copolymers self-assembled into nanoscale micelles capable of encapsulating hydrophobic paclitaxel in their hydrophobic cores in aqueous solutions. To further enhance their thermodynamic stability, the micelles were cross-linked by radical polymerization of the double bonds introduced into the PCL blocks. Reaction conditions were found to significantly affect both the cross-linking efficiency and the micelle size. The encapsulation of paclitaxel into the micelles was confirmed by the proton nuclear magnetic resonance (1H NMR) spectroscopy. Encouragingly, paclitaxel-loading efficiency of micelles was enhanced significantly upon micelle core-cross-linking. Both the micelle size and the drug loading efficiency increased markedly with increasing the PCL block lengths, no matter if the micelles were core-cross-linked or not. However, paclitaxel-loading did not obviously affect the micelle size or size distribution. The cross-linked micelles exhibited a significantly enhanced thermodynamic stability against dilution with aqueous solvents. The efficient cellular uptake of paclitaxel loaded in the nanomicelles was demonstrated by confocal laser scanning microscopy (CLSM) imaging. This new biodegradable nanoscale carrier system merits further investigations for parenteral drug delivery.  相似文献   

17.
Chitosan is a well sought-after polysaccharide in biomedical applications and has been blended with various macromolecules to mitigate undesirable properties. However, the effects of blending on the unique antibacterial activity of chitosan as well as changes in fatigue and degradation properties are not well understood. The aim of this work was to evaluate the anti-bacterial properties and changes in physicochemical properties of chitosan upon blending with synthetic polyester poly(epsilon-caprolactone) (PCL). Chitosan and PCL were homogeneously dissolved in varying mass ratios in a unique 77% acetic acid in water mixture and processed into uniform membranes. When subjected to uniaxial cyclical loading in wet conditions, these membranes sustained 10 cycles of predetermined loads up to 1 MPa without break. Chitosan was anti-adhesive to Gram-positive Streptococcus mutans and Gram-negative Actinobacillus actinomycetemcomitans bacteria. Presence of PCL compromised the antibacterial property of chitosan. Four-week degradation studies in PBS/lysozyme at 37 degrees C showed initial weight loss due to chitosan after which no significant changes were observed. Molecular interactions between chitosan and PCL were investigated using Fourier transform infrared spectroscopy (FTIR) which showed no chemical bond formations in the prepared blends. Investigation by wide-angle X-ray diffraction (WAXD) indicated that the crystal structure of individual polymers was unchanged in the blends. Dynamic mechanical and thermal analysis (DMTA) indicated that the crystallinity of PCL was suppressed and its storage modulus increased with the addition of chitosan. Analysis of surface topography by atomic force microscopy (AFM) showed a significant increase in roughness of all blends relative to chitosan. Observed differences in biological and anti-bacterial properties of blends could be primarily attributed to surface topographical changes.  相似文献   

18.
Amphiphilic diblock copolymers, Sz6 and Sz12, consisting of a poly(dimethylsiloxane) block (average degree of polymerisation = 132) and a PEGylated-fluoroalkyl modified polystyrene block (Sz, average degree of polymerisation = 6, 12) were prepared by atom transfer radical polymerization (ATRP). Coatings were obtained from blends of either block copolymer (1–10 wt%) with a poly(dimethylsiloxane) (PDMS) matrix. The coating surface presented a simultaneous hydrophobic and lipophobic character, owing to the strong surface segregation of the lowest surface energy fluoroalkyl chains of the block copolymer. Surface chemical composition and wettability of the films were affected by exposure to water. Block copolymer Sz6 was also blended with PDMS and a 0.1 wt% amount of multiwall carbon nanotubes (CNT). The excellent fouling-release (FR) properties of these new coatings against the macroalga Ulva linza essentially resulted from the inclusion of the amphiphilic block copolymer, while the addition of CNT did not appear to improve the FR properties.  相似文献   

19.
Tapping mode atomic force microscopy was used to investigate the lamellar morphology of poly(l-lactide) and two poly(l-lactide-co-meso-lactide) random copolymers containing 3% and 6% meso-lactide. Samples were isothermally crystallized at selected temperatures, and qualitative and quantitative analyses of lamellar structure were performed using height and phase images. This is the first study of the morphology of polylactide stereocopolymers using a real-space probe, and the important effects of scanning parameters on the acquired images are described. More open spherulites with an abundance of screw dislocations between edge-on lamellar stacks were observed in samples crystallized at higher temperatures. Mean lamellar thicknesses are lower for the random copolymers compared to PLLA, particularly at lower DeltaT, in agreement with the results of our previous small-angle X-ray scattering (SAXS) experiments. Mean lamellar thicknesses derived from the current real-space examination are in good agreement with those determined previously from SAXS. Internal surfaces-from microtomed specimens-were also studied to investigate the bulk crystal morphology. Although quantitative analysis was not feasible (for reasons discussed in the text), lamellar organization similar to that seen in the surface experiments is observed at high magnifications.  相似文献   

20.
The biodegradability of poly(epsilon-caprolactone) (PCL) was studied in blends and composites of modified and granular starch. Four types of PCL-starch compositions were prepared: (i) PCL-granular starch blends; (ii) hydrophobic coating of starch particles by n-butylisocyanate (C(4) starch) and octadecyltrichlorosilane (C(18) starch), followed by melt blending with PCL; (iii) PCL-starch blends compatibilized by PCL-g-dextran grafted copolymer (PGD); and (iv) PCL-grafted starch particles (PGS) as obtained by in situ ring-opening polymerization of caprolactone (CL) initiated directly from hydroxyl functions at the granular starch surface. Biodegradability of these materials was measured by monitoring the percentage of weight loss in composting and the rate of fungal colonization when samples were used as a sole carbon source for fungus (A. niger). Intrinsic viscosity [eta] of host PCL chains was measured after extraction of composted samples in boiled chloroform. SEM was used to study the surface morphology after compost incubation of the samples. The inherent biodegradability of host polymer was enhanced with surface compatibilization during composting for longer incubation. It was observed that the weight loss during composting increased with the decrease in interfacial tension between filler and polymer. In general, it was concluded that inherent biodegradability does not depend very significantly on the concentration of starch in the polyester matrix, but on the compatibilization efficiency. The effect of the PCL fraction in the graft copolymer, when used as compatibilizer, was also studied on the biodegradability of the host polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号