首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous approaches have been described for creating relatively small folded biomolecular structures. "Peptide-amphiphiles," whereby monoalkyl or dialkyl hydrocarbon chains are covalently linked to peptide sequences, have been shown previously to form specific molecular architecture of enhanced stability. The present study has examined the use of monoalkyl hydrocarbon chains as a more general method for inducing protein-like structures. Peptide and peptide-amphiphiles have been characterized by CD and one- and two-dimensional nmr spectroscopic techniques. We have examined two structural elements: alpha-helices and collagen-like triple helices. The alpha-helical propensity of a 16-residue peptide either unmodified or acylated with a C(6) or C(16) monoalkyl hydrocarbon chain has been examined initially. The 16-residue peptide alone does not form a distinct structure in solution, whereas the 16-residue peptide adopts predominantly an alpha-helical structure in solution when a C(6) or C(16) monoalkyl hydrocarbon chain is N-terminally acylated. The thermal stability of the alpha-helix is greater upon addition of the C(16) compared with the C(6) chain, which correlates to the extent of aggregation induced by the respective hydrocarbon chains. Very similar results are seen using a 39-residue triple-helical model peptide, in that structural thermal stability (a) is increasingly enhanced as alkyl chain length is increased and (b) correlates to the extent of peptide-amphiphile aggregation. Overall, structures as diverse as alpha-helices, triple helices, and turns/loops have been shown to be induced and/or stabilized by alkyl chains. Increasing alkyl chain length enhances stability of the structural element and induces aggregates of defined sizes. Hydrocarbon chains may be useful as general tools for protein-like structure initiation and stabilization as well as biomaterial modification.  相似文献   

2.
We have used synthetic lipidated peptides ("peptide-amphiphiles") to study the structure and function of isolated domains of integral transmembrane proteins. We used 9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase peptide synthesis to prepare full-length phospholamban (PLB(1-52)) and its cytoplasmic (PLB(1-25)K: phospholamban residues 1-25 plus a C-terminal lysine), and transmembrane (PLB(26-52)) domains, and a 38-residue model alpha-helical sequence as a control. We created peptide-amphiphiles by linking the C-terminus of either the isolated cytoplasmic domain or the model peptide to a membrane-anchoring, lipid-like hydrocarbon tail. Circular dichroism measurements showed that the model peptide-amphiphile, either in aqueous suspension or in lipid bilayers, had a higher degree of alpha-helical secondary structure than the unlipidated model peptide. We hypothesized that the peptide-amphiphile system would allow us to study the function and structure of the PLB(1-25)K cytoplasmic domain in a native-like configuration. We compared the function (inhibition of the Ca-ATPase in reconstituted membranes) and structure (via CD) of the PLB(1-25) amphiphile to that of PLB and its isolated transmembrane and cytoplasmic domains. Our results indicate that the cytoplasmic domain PLB(1-25)K has no effect on Ca-ATPase (calcium pump) activity, even when tethered to the membrane in a manner mimicking its native configuration, and that the transmembrane domain of PLB is sufficient for inhibition of the Ca-ATPase.  相似文献   

3.
The study we present involves the use of a biomimetic system that allows us to study specific interactions in the alpha(5)beta(1) receptor-GRGDSP ligand system with an atomic force microscope (AFM). Bioartificial membranes that mimic the adhesion domain of the extracellular matrix protein fibronectin are constructed from peptide-amphiphiles. A novel peptide-amphiphile is designed that contains both GRGDSP (Gly-Arg-Gly-Asp-Ser-Pro, the primary recognition site for alpha(5)beta(1)) and PHSRN (Pro-His-Ser-Arg-Asn, the synergy binding site for alpha(5)beta(1)) sequences in a single peptide formulation, separated by a spacer. Two different antibodies are used to immobilize and activate isolated alpha(5)beta(1) integrins on the AFM tip. The interaction measured between immobilized alpha(5)beta(1) integrins and peptide-amphiphiles is specific for integrin-peptide binding and is affected by divalent cations in a way that accurately mimics the adhesion function of the alpha(5)beta(1) receptor. The strength of the PHSRN synergistic effect depends on the accessibility of this sequence to alpha(5)beta(1) integrins. An increase in adhesion is observed compared to surfaces displaying only GRGDSP peptides when the new biomimetic peptide-amphiphiles are diluted with lipidated poly(ethylene glycol), which provides more space for the peptide headgroups to bend and expose more of the PHSRN at the interface.  相似文献   

4.
In this communication, we illustrate a new method to modulate the chemical and mechanical properties of peptide-amphiphile nanofibers. Hydrogels containing a mixture of peptide-amphiphile and phospholipid were prepared and evaluated for their mechanical properties, peptide conformation, and nanostructure. It was found that the storage modulus achieved a maximum at 5 mol % phospholipid and that this coincided with the maximum beta sheet signal as observed by circular dichroism. Throughout the ratios of peptide-amphiphile to phospholipid tested, the storage modulus and peptide secondary structure were closely correlated indicating the coupling between molecular structure and macroscopic properties. The nanostructure of the composite fibers was assessed by vitreous ice cryo-TEM and found to be largely independent of the mixture ratio. These new findings will enhance the versatility of peptide-amphiphiles in nanostructured tissue engineering and drug delivery applications.  相似文献   

5.
《The Journal of cell biology》1990,111(6):3065-3076
Using synthetic peptides, we have identified two distinct regions of the glycoprotein SPARC (Secreted Protein Acidic and Rich in Cysteine) (osteonectin/BM-40) that inhibit cell spreading. One of these sites also contributes to the affinity of SPARC for extracellular matrix components. Peptides representing subregions of SPARC were synthesized and antipeptide antibodies were produced. Immunoglobulin fractions of sera recognizing an NH2-terminal peptide (designated 1.1) blocked SPARC- mediated anti-spreading activity. Furthermore, when peptides were added to newly plated endothelial cells or fibroblasts, peptide 1.1 and a peptide corresponding to the COOH terminal EF-hand domain (designated 4.2) inhibited cell spreading in a dose-dependent manner. These peptides exhibited anti-spreading activity at concentrations from 0.1 to 1 mM. The ability of peptides 1.1 and 4.2 to modulate cell shape was augmented by an inhibitor of protein synthesis and was blocked by specific antipeptide immunoglobulins. In addition to blocking cell spreading, peptide 4.2 competed for binding of [125I]SPARC and exhibited differential affinity for extracellular matrix molecules in solid-phase binding assays. The binding of peptide 4.2 to matrix components was Ca+(+)-dependent and displayed specificities similar to those of native SPARC. These studies demonstrate that both anti- spreading activity and affinity for collagens are functions of unique regions within the SPARC amino acid sequence. The finding that two separate regions of the SPARC protein contribute to its anti-spreading activity lead us to propose that multiple regions of the protein act in concert to regulate the interactions of cells with their extracellular matrix.  相似文献   

6.
Endothelial cell activation involves the elevated expression of cell adhesion molecules, chemoattractants, chemokines, and cytokines. These expression profiles may be regulated by integrin-mediated cell signaling pathways. In the current study, an alpha2beta1 integrin triple helical peptide ligand derived from type I collagen residues alpha1(I)496-507 was examined for induction of human aortic endothelial cell (HAEC) activation. In addition, a "miniextracellular matrix" composed of a mixture of the alpha1(I)496-507 ligand and a second, alpha-helical ligand incorporating the endothelial cell proliferating region of SPARC (secreted protein acidic and rich in cysteine) was studied for induction of HAEC activation. Following HAEC adhesion to alpha1(I)496-507, mRNA expression of E-selectin-1, vascular and intercellular cell adhesion molecules-1, and monocytic chemoattractant protein-1 was stimulated, whereas that of endothelin-1 was inhibited. Enzyme-linked immunosorbent assay analysis demonstrated that E-selectin-1 and monocytic chemoattractant protein-1 expression was also stimulated, whereas endothelin-1 protein expression diminished. Engagement of the alpha2beta1 integrin initiated a HAEC response similar to that of tumor necrosis factor-alpha-induced HAECs but was not sufficient to induce an inflammatory response. Addition of the SPARC119-122 region had only a slight effect on HAEC activation. Other cell-extracellular matrix interactions appear to be required to elicit an inflammatory response. The alpha2beta1 integrin specific triple helical peptide ligand described herein represents a more general in vitro model system by which gene expression and protein production profiles induced by binding to a single cellular receptor type can be quantified.  相似文献   

7.
Koo YS  Kim JM  Park IY  Yu BJ  Jang SA  Kim KS  Park CB  Cho JH  Kim SC 《Peptides》2008,29(7):1102-1108
The structure-activity relations and mechanism of action of parasin I, a 19-amino acid histone H2A-derived antimicrobial peptide, were investigated. Parasin I formed an amphipathic alpha-helical structure (residues 9-17) flanked by two random coil regions (residues 1-8 and 18-19) in helix-promoting environments. Deletion of the lysine residue at the N-terminal [Pa(2-19)] resulted in loss of antimicrobial activity, but did not affect the alpha-helical content of the peptide. The antimicrobial activity was recovered when the lysine residue was substituted with another basic residue, arginine ([R(1)]Pa), but not with polar, neutral, or acidic residues. Progressive deletions from the C-terminal [Pa(1-17), Pa(1-15)] slightly increased the antimicrobial activity (1-4 microg/ml) without affecting the alpha-helical content of the peptide. However, further deletion [Pa(1-14)] resulted in nearly complete loss of antimicrobial activity and alpha-helical structure. Confocal microscopic analysis and membrane permeabilization assays showed that parasin I and its analogs with comparable antimicrobial activities localized to the cell membrane and subsequently permeabilized the outer and cytoplasmic membranes. Pa(1-14) also localized to the cell membrane, but lost membrane-permeabilizing activity, whereas Pa(2-19) showed poor membrane-binding and -permeabilizing activities. The results indicate that the basic residue at the N-terminal is essential for the membrane-binding activity of parasin I, and among the membrane-binding parasin I analogs, the alpha-helical structure is necessary for the membrane-permeabilizing activity.  相似文献   

8.
SPARC is a transiently expressed extracellular matrix-binding protein that alters cell shape and regulates endothelial cell proliferation in vitro. In this study, we show that SPARC mRNA and protein are synthesized by endothelial cells during angiogenesis in vivo. SPARC and peptides derived from a cationic region of the protein (amino acids 113- 130) stimulated the formation of endothelial cords in vitro; moreover, these peptides stimulated angiogenesis in vivo. Mapping of the active domain demonstrated that the sequence KGHK was responsible for most of the angiogenic activity; substitution of the His residue decreased the effect. We found that proteolysis of SPARC provided a source of KGHK, GHK, and longer peptides that contained these sequences. Although the Cu(2+)-GHK complex had been identified as a mitogen/morphogen in normal human plasma, we found KGHK and longer peptides to be potent stimulators of angiogenesis. SPARC113-130 and KGHK were shown to bind Cu2+ with high affinity; however, previous incubation with Cu2+ was not required for the stimulatory activity. Since a peptide from a second cationic region of SPARC (SPARC54-73) also bound Cu2+ but had no effect on angiogenesis, the angiogenic activity appeared to be sequence specific and independent of bound Cu2+. Thus, specific degradation of SPARC, a matrix-associated protein expressed by endothelial cells during vascular remodeling, releases a bioactive peptide or peptides, containing the sequence (K)GHK, that could regulate angiogenesis in vivo.  相似文献   

9.
The principal products derived from in vivo processing of anglerfish preproglucagon II were isolated and their structures determined. The structures were confirmed by a combination of automated Edman degradation, amino acid analysis, and fast atom bombardment mass spectrometry. The peptide corresponding to anglerfish preproglucagon II-(22-49) (numbering from the amino terminus of preproglucagon) was isolated intact and defines the site of signal cleavage to be between Gln-21 and Met-22. Glucagon from the anglerfish preproglucagon gene II was found to correspond to preproglucagon II-(52-80) (numbering from the amino terminus). Three forms of a glucagon-like peptide derived from preproglucagon II were also isolated. The structure of the longest form was consistent with the sequence of preproglucagon II-(89-122) deduced from the cDNA, His-Ala-Asp-Gly-Thr-Tyr-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Gln-Asp-Gln-Ala- Ala-Lys-Asp-Phe-Val-Ser-Trp-Leu-Lys-Ala-Gly-Arg-Gly-Arg-Arg-Glu. The carboxyl-terminal portion deduced from the cDNA remains intact in this form. A second form, preproglucagon II-(89-119) appears to result from proteolytic processing of the major form at the two adjacent arginine residues occurring at the carboxyl terminus. This second form has a glycine residue at its carboxyl terminus and is processed to the third form (preproglucagon II-(89-118)) which contains a carboxyl-terminal arginineamide. Radiolabeling studies in primary tissue culture support the observation that glucagon (preproglucagon II-(52-80], preproglucagon II-(89-122), and preproglucagon II-(89-119) are products of proglucagon processing in vivo.  相似文献   

10.
Secreted protein, acidic, rich in cysteine (SPARC) is a Ca2+-binding, counter-adhesive, extracellular glycoprotein associated with major morphogenic events and tissue remodeling in vertebrates. In Xenopus laevis embryos, SPARC is expressed first by dorsal mesoderm cells at the end of gastrulation and undergoes complex, rapid changes in its pattern of expression during early organogenesis. Another study has reported that precocious expression of SPARC by injection of native protein into the blastocoele cavity of pregastrula embryos leads to a concentration-dependent reduction in anterior development. Thus, normal development requires that the timing, spatial distribution, and/or levels of SPARC be regulated precisely. In a previous study, we demonstrated that injection of a synthetic peptide corresponding to the C-terminal, Ca2+-binding, EF-hand domain of SPARC (peptide 4.2) mimicked the effects of native SPARC. In the present investigation, peptide 4.2 was used to examine the cellular and molecular bases of the phenotypes generated by the aberrant presence of SPARC. Exposure of late blastula embryos to LiCl also generated a concentration-dependent reduction in anterior development; therefore, injections of LiCl were carried out in parallel to highlight the unique effects of peptide 4.2 on early development. At concentrations that caused a similar loss in anterior development (60-100 ng peptide 4.2 or 0.25-0.4 microg LiCl), LiCl had a greater inhibitory effect on the initial rate of chordomesoderm cell involution, in comparison with peptide 4.2. However, as gastrulation progressed, peptide 4.2 had a greater inhibitory effect on prospective head mesoderm migration than that seen in the presence of LiCl. Moreover, peptide 4.2 and LiCl had distinct influences on the expression pattern of dorso-anterior markers at the neural and tail-bud stages of development. Scanning electron microscopy showed that peptide 4.2 inhibited spreading of migrating cells at the leading edge of the involuting chordomesoderm. While still in close proximity to the blastocoele roof, many of the cells appeared rounded and lacked lamellipodia and filopodia extended in the direction of migration. In contrast, LiCl had no effect on the spreading or shape of involuting cells. These data are the first evidence of a counter-adhesive activity for peptide 4.2 in vivo, an activity demonstrated for both native SPARC and peptide 4.2 in vitro.  相似文献   

11.
SPARC (secreted protein, acidic and rich in cysteine), also known as osteonectin, is an extracellular Ca+2-glycoprotein that inhibits the incorporation of [3H]-and delays the onset of S-phase in synchronized cultures of bovine aortic endothelial (BAE) cells. This effect appears not to be dependent on the functional properties of SPARC associated with changes in cell shape or inhibition of cell spreading. In this study we investigate the conditions under which cell cycle modulation occurs in different types of cells. Human umbilical vein endothelial cells, a transformed fetal BAE cell line, and bovine capillary endothelial cells exhibited a sensitivity to SPARC and a cationic peptide from a non-Ca+2-region of SPARC (peptide 2.1, 0.2—0.8 mM) similar to that observed in BAE cells. In contrast, human foreskin fibroblasts and fetal bovine ligament fibroblasts exhibited an increase in the incorporation of [3H]-in the presence of 25 μM—0.2 mM peptide 2.1; inhibition was observed at concentrations in excess of 0.4 mM. This biphasic modulation could be further localized to a sequence of 10 amino acids comprising the N-terminal half of peptide 2.1. A synthetic peptide from another cationic region of SPARC (peptide 2.3) increased [3H]-incorporation by BAE cells and fibroblasts in a dose-dependent manner. In endothelial cells, a stimulation of 50% was observed at a concentration of 0.01 mM; fibroblasts required ~ 100-fold more peptide 2.3 for levels of stimulation comparable to those obtained in endothelial cells. The observation that SPARC and unique SPARC peptides can differentially influence the growth of fibroblasts and endothelial cells in a concentration-dependent manner suggests that SPARC might regulate proliferation of specific cells during wound repair and remodeling. © 1993 Wiley-Liss, Inc.  相似文献   

12.
The substrate and regiospecificities of the known CYP4A enzymes from rat (CYP4A1, -4A2, -4A3, and -4A8) and human (CYP4A11) have been determined using lauric (C12), myristic (C14), palmitic (C16), oleic (C18:1), and arachidonic (C20:4) acids. The CYP4A2 and CYP4A8 cDNAs required to complete the enzyme set were cloned from a rat kidney library. All five proteins were expressed in Escherichia coli and were purified with the help of a six-histidine tag at the carboxyl terminus. Two complementary CYP4A2-CYP4A3 chimeras fused at residue 119 (CYP4A2) and 122 (CYP4A3) were constructed to explore the roles of the 18 amino acid differences between the parent proteins in determining their catalytic profiles. The chimera in which the first 119 amino acids are from CYP4A2 indicates that the first 120 amino acids control the substrate specificity. The chimera in which the first 122 amino acids are from CYP4A3 is inactive due to a defect in electron transfer to the heme group. The highest activity for lauric acid was obtained with CYP4A1 and CYP4A8, but for all the proteins the activity decreased with increasing fatty acid chain length. The fact that none of the rat and human CYP4A enzymes exhibits a high activity with arachidonic acid appears to limit their role as catalysts for the physiologically important conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE).  相似文献   

13.
The activity of m-calpain, a heterodimeric, Ca2+-dependent cysteine protease appears to be modulated by membrane interactions involving oblique-orientated alpha-helix formation by a segment, GTAMRILGGVI, in the protein's smaller subunit. Here, graphical and hydrophobic moment-based analyses predicted that this segment may form an alpha-helix with strong structural resemblance to the influenza virus peptide, HA2, a known oblique-orientated alpha-helix former. Fourier transform infrared spectroscopy showed that a peptide homologue of the GTAMRILGGVI segment, VP1, adopted low levels of alpha-helical structure ( approximately 20%) in the presence of zwitterionic lipid and induced a minor decrease (3 degrees C) in the gel to liquid-crystalline phase transition temperature, TC, of the hydrocarbon chains of zwitterionic membranes, suggesting interaction with the lipid headgroup region. In contrast, VP1 adopted high levels of alpha-helical structure (65%) in the presence of anionic lipid, induced a large increase (10 degrees C) in the TC of anionic membranes, and showed high levels of anionic lipid monolayer penetration (DeltaSP = 5.5 mN.m-1), suggesting deep levels of membrane penetration. VP1 showed strong haemolytic ability (LD50 = 1.45 mm), but in the presence of ionic agents, this ability, and that of VP1 to penetrate anionic lipid monolayers, was greatly reduced. In combination, our results suggest that m-calpain domain V may penetrate membranes via the adoption of an oblique-orientated alpha-helix and electrostatic interactions. We speculate that these interactions may involve snorkelling by an arginine residue located in the polar face of this alpha-helix.  相似文献   

14.
Y Levy  E Hanan  B Solomon  O M Becker 《Proteins》2001,45(4):382-396
A set of 34 molecular dynamic (MD) simulations totaling 305 ns of simulation time of the prion protein-derived peptide PrP106-126 was performed with both explicit and implicit solvent models. The objective of these simulations is to investigate the relative stability of the alpha-helical conformation of the peptide and the mechanism for conversion from the helix to a random-coil structure. At neutral pH, the wild-type peptide was found to lose its initial helical structure very fast, within a few nanoseconds (ns) from the beginning of the simulations. The helix breaks up in the middle and then unwinds to the termini. The spontaneous transition into the random coil structure is governed by the hydrophobic interaction between His(111) and Val(122). The A117V mutation, which is linked to GSS disease, was found to destabilize the helix conformation of the peptide significantly, leading to a complete loss of helicity approximately 1 ns faster than in the wild-type. Furthermore, the A117V mutant exhibits a different mechanism for helix-coil conversion, wherein the helix begins to break up at the C-terminus and then gradually to unwind towards the N-terminus. In most simulations, the mutation was found to speed up the conversion through an additional hydrophobic interaction between Met(112) and the mutated residue Val(117), an interaction that did not exist in the wild-type peptide. Finally, the beta-sheet conformation of the wild-type peptide was found to be less stable at acidic pH due to a destabilization of the His(111)-Val(122), since at acidic pH this histidine is protonated and is unlikely to participate in hydrophobic interaction.  相似文献   

15.
The dapA gene, encoding dihydrodipicolinate synthase (DDPS) partially desensitized to inhibition by L-lysine, was cloned from an L-threonine- and L-lysine-coproducing mutant of the obligate methylotroph Methylobacillus glycogenes DHL122 by complementation of the nutritional requirement of an Escherichia coli dapA mutant. Introduction of the dapA gene into DHL122 and AL119, which is the parent of DHL122 and an L-threonine producing mutant, elevated the specific activity of DDPS 20-fold and L-lysine production 2- to 3-fold with concomitant reduction of L-threonine in test tube cultures. AL119 containing the dapA gene produced 8 g of L-lysine per liter in a 5-liter jar fermentor from methanol as a substrate. Analysis of the nucleotide sequence of the dapA gene shows that it encodes a peptide with an M(r) of 30,664 and that the encoded amino acid sequence is extensively homologous to those of other organisms. In order to study the mutation that occurred in DHL122, the dapA genes of the wild type and AL119 were cloned and sequenced. Comparison of the nucleotide sequences of the dapA genes revealed that the amino acid at residue 88 was F in DHL122 whereas it was L in the wild type and AL119, suggesting that this amino acid alteration that occurred in DHL122 caused the partial desensitization of DDPS to the inhibition by L-lysine. The similarity in the amino acid sequences of DDPS in M. glycogenes and other organisms suggests that the mutation of the dapA gene in DHL122 is located in the region concerned with interaction of the allosteric effector, L-lysine.  相似文献   

16.
A stepwise procedure for preparing of site-specific binuclear metallopeptides is described. The modification procedure involves the alkylation of a cysteine side chain by reaction with [Ru(bpy)(2)(phen-ClA)](2+), where bpy = 2,2'-bipyridine and phen-ClA = 5-chloroacetamido-1,10-phenanthroline, followed by the coordination of a ruthenium pentammine complex to a histidine residue located elsewhere along the sequence. The apo and metalated versions of the peptides C10H21(30-mer) and H10C21(30-mer) display circular dichroism spectra having minima at 208 and 222 nm, with theta(222)/theta(208) = 1.04 to indicate that these peptides exist as alpha-helical coiled-coils in aqueous solution. When the ruthenium polypyridyl complex is attached to C10H21(30-mer), the Delta-l and Lambda-l diastereomers of the resulting metallopeptide can be readily separated from each other by reversed-phase HPLC. However, in the case of the related H10C21(30-mer) metallopeptide, the two diastereomers cannot be chromatographically resolved. These results indicate how the subtle interplay between peptide conformation/sequence and metal complex geometry may alter some of the physical characteristics of metallopeptides.  相似文献   

17.
The interactive and conformational behavior of a series of neuropeptide Y-[18-36] (NPY-[18-36]) analogs in hydrophobic environments have been investigated using reversed-phase high-performance liquid chromatography (RP-HPLC) and circular dichroism (CD) spectroscopy. The peptides studied comprised a series of 16 analogs of NPY-[18-36], each containing a single D-amino acid substitution. The influence of these single L-->D substitutions on the alpha-helical conformation of the NPY-[18-36] analogs in different solvent environments was determined by CD spectroscopy. Retention parameters related to the hydrophobic contact area and the affinity of interaction were determined with an n-octadecyl (C18) adsorbent. Structural transitions for all peptides were manifested as significant changes in the hydrophobic binding domain and surface affinity between 4 degrees C and 37 degrees C. The results indicated that the central region of NPY-[18-36] (residues 23-33) is important for maintenance of the alpha-helical conformation. Moreover, L-->D amino acid residue substitutions within the N- and C-terminal regions, as well as Asn29 and Leu30, do not appear to affect the secondary structure of the peptide. These studies demonstrate that RP-HPLC provides a powerful adjunct for investigations into the induction of stabilized secondary structure in peptides upon their interaction with hydrophobic surfaces.  相似文献   

18.
In this study we have designed the NTFR peptide-amphiphile that mimics a fragment of the N-terminus of the fractalkine receptor (CX(3)CR1) and specifically targets fractalkine, a novel adhesion molecule expressed on the surface of inflamed endothelial cells. Bioartificial membranes were constructed from mixtures of NTFR peptide-amphiphiles and DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) phospholipids, and the affinity and specificity of fractalkine for the synthetic NTFR was investigated with an atomic force microscope (AFM). Fractalkine was immobilized onto the AFM tips, and forces were collected between fractalkine and the bioartificial membranes. The adhesive interactions were studied at the collective level, when each adhesion event corresponded to the rupture of multiple biomolecular bonds. Retraction force profiles for the fractalkine-NTFR system exhibited single or multiple peaks and a small percentage of the force curves demonstrated stretching of the fractalkine-NTFR complex. Strong adhesion was measured when both DPPC and NTFR were present, compared to pure NTFR surfaces. This may be due to the fact that the DPPC molecule is shorter, and thus it can provide more space for the peptide headgroup to bend and expose its sequence at the interface. Specificity was demonstrated by comparing the NTFR-fractalkine adhesion to the forces between the alpha(5)beta(1) integrin (an adhesion receptor expressed on the surface of endothelial cells) and other surfaces such as GRGDSP (the specific ligand for alpha(5)beta(1)), GRGESP (an inactive sequence), and NTFR.  相似文献   

19.
The alpha-helical antibiotic peptide (P18: KWKLFKKIPKFLHLAKKF-NH2) designed from the cecropin A(1-8)-magainin 2 (1-12) hybrid displayed strong bactericidal and tumoricidal activity without inducing hemolysis. The effect of the Pro9 residue at central position of P18 on cell selectivity was investigated by Pro9 --> Leu or Pro9 --> Ser substitution. Either substitution markedly reduced the antibacterial activity of P18 and increased hemolysis, although it did not significantly affect cytotoxicity against human transformed tumor and normal fibroblast cells. These results suggest that a proline kink in alpha-helical antibiotic peptide P18 serves as a hinge region to facilitate ion channel formation on bacterial cell membranes and thus plays an important role in providing high selectivity against bacterial cells. Furthermore, to investigate the structure-antibiotic activity relationships of P18, a series of N- or C-terminal deletion and substitution analogs of P18 were synthesized. The C-terminal region of P18 was related to its antibiotic activity and alpha-helical conformation on lipid membranes rather than N-terminal one. Higher alpha-helicity of the peptides was involved in the hemolytic and antitumor activity rather than antibacterial activity. Except for [L9]-P18 and [S9]-P18, all the designed peptides containing a Pro residue showed potent antibacterial activity, although they did not induce a cytolytic effect against human erythrocyte and normal fibroblast cells at the concentration required to kill bacteria. In particular, P18 and some analogs (N-1, N-2, N-3, N-3L and N-4L) with potent bactericidal and tumoricidal activity and little or no normal cell toxicity may serve as an attractive candidate for the development of novel anti-infective or antitumor agents.  相似文献   

20.
Streptococcus mutans secretes and utilizes a 21-amino-acid signaling peptide pheromone to initiate quorum sensing for genetic competence, biofilm formation, stress responses, and bacteriocin production. In this study, we designed and synthesized a series of truncated peptides and peptides with amino acid substitutions to investigate their structure-activity relationships based on the three-dimensional structures of S. mutans wild-type signaling peptide UA159sp and C-terminally truncated peptide TPC3 from mutant JH1005 defective in genetic competence. By analyzing these peptides, we demonstrated that the signaling peptide of S. mutans has at least two functional domains. The C-terminal structural motif consisting of a sequence of polar hydrophobic charged residues is crucial for activation of the signal transduction pathway, while the core alpha-helical structure extending from residue 5 to the end of the peptide is required for receptor binding. Peptides in which three or more residues were deleted from the C terminus did not induce genetic competence but competitively inhibited quorum sensing activated by UA159sp. Disruption of the amphipathic alpha-helix by replacing the Phe-7, Phe-11, or Phe-15 residue with a hydrophilic residue resulted in a significant reduction in or complete loss of the activity of the peptide. In contrast to the C-terminally truncated peptides, these peptides with amino acid substitutions did not compete with UA159sp to activate quorum sensing, suggesting that disruption of the hydrophobic face of the alpha-helical structure results in a peptide that is not able to bind to the receptor. This study is the first study to recognize the importance of the signaling peptide C-terminal residues in streptococcal quorum sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号