首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TNF-alpha induced a dose- and time-dependent increase in cyclooxygenase-2 (COX-2) expression and PGE2 formation in human NCI-H292 epithelial cells. Immunofluorescence staining demonstrated that COX-2 was expressed in cytosol and nuclear envelope. Tyrosine kinase inhibitors (genistein or herbimycin) or phosphoinositide-specific phospholipase C inhibitor (U73122) blocked TNF-alpha-induced COX-2 expression. TNF-alpha also stimulated phosphatidylinositol hydrolysis and protein kinase C (PKC) activity, and both were abolished by genistein or U73122. The PKC inhibitor, staurosporine, also inhibited TNF-alpha-induced response. The 12-O-tetradecanoylphorbol 13-acetate (TPA), a PKC activator, also stimulated COX-2 expression, this effect being inhibited by genistein or herbimycin. NF-kappaB DNA-protein binding and COX-2 promoter activity were enhanced by TNF-alpha, and these effects were inhibited by genistein, U73122, staurosporine, or pyrolidine dithiocarbamate. TPA stimulated both NF-kappaB DNA-protein binding and COX-2 promoter activity, these effects being inhibited by genistein, herbimycin, or pyrolidine dithiocarbamate. The TNF-alpha-induced, but not the TPA-induced, COX-2 promoter activity was inhibited by phospholipase C-gamma2 mutants, and the COX-2 promoter activity induced by either agent was attenuated by dominant-negative mutants of PKC-alpha, NF-kappaB-inducing kinase, or I-kappaB (inhibitory protein that dissociates from NF-kappaB) kinase (IKK)1 or 2. IKK activity was stimulated by both TNF-alpha and TPA, and these effects were inhibited by staurosporine or herbimycin. These results suggest that, in NCI-H292 epithelial cells, TNF-alpha might activate phospholipase C-gamma2 via an upstream tyrosine kinase to induce activation of PKC-alpha and protein tyrosine kinase, resulting in the activation of NF-kappaB-inducing kinase and IKK1/2, and NF-kappaB in the COX-2 promoter, then initiation of COX-2 expression and PGE2 release.  相似文献   

2.
3.
The signaling pathway involved in tumor necrosis factor-alpha (TNF-alpha)-induced intercellular adhesion molecule-1 (ICAM-1) expression was further studied in human A549 epithelial cells. TNF-alpha- or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ICAM-1 promoter activity was inhibited by a protein kinase C (PKC) inhibitor (staurosporine), tyrosine kinase inhibitors (genistein and herbimycin A), or an Src-specific tyrosine kinase inhibitor (PP2). TNF-alpha- or TPA-induced IkappaBalpha kinase (IKK) activation was also blocked by these inhibitors, which slightly reversed TNF-alpha-induced but completely reversed TPA-induced IkappaBalpha degradation. c-Src and Lyn, two members of the Src kinase family, were abundantly expressed in A549 cells, and their activation by TNF-alpha or TPA was inhibited by the same inhibitors. Furthermore, the dominant-negative c-Src (KM) mutant inhibited induction of ICAM-1 promoter activity by TNF-alpha or TPA. Overexpression of the constitutively active PKC or wild-type c-Src plasmids induced ICAM-1 promoter activity, this effect being inhibited by the dominant-negative c-Src (KM) or IKKbeta (KM) mutant but not by the nuclear factor-kappaB-inducing kinase (NIK) (KA) mutant. The c-Src (KM) mutant failed to block induction of ICAM-1 promoter activity caused by overexpression of wild-type NIK. In co-immunoprecipitation and immunoblot experiments, IKK was found to be associated with c-Src and to be phosphorylated on tyrosine residues after TNF-alpha or TPA treatment. Two tyrosine residues, Tyr188 and Tyr199, near the activation loop of IKKbeta, were identified as being important for NF-kappaB activation. Substitution of these residues with phenylalanines abolished ICAM-1 promoter activity and c-Src-dependent phosphorylation of IKKbeta induced by TNF-alpha or TPA. These data suggest that, in addition to activating NIK, TNF-alpha also activates PKC-dependent c-Src. These two pathways converge at IKKbeta and go on to activate NF-kappaB, via serine phosphorylation and degradation of IkappaB-alpha, and, finally, to initiate ICAM-1 expression.  相似文献   

4.
5.
We have been interested in elucidating how simultaneous stimuli modulate inflammation-related signal transduction pathways in lung parenchymal cells. We previously demonstrated that exposing respiratory epithelial cells to 95% oxygen (hyperoxia) synergistically increased tumor necrosis factor-alpha (TNF-alpha)-mediated activation of NF-kappaB and NF-kappaB-dependent gene expression by a mechanism involving increased activation of IkappaB kinase (IKK). Because the signal transduction mechanisms induced by IL-1beta are distinct to that of TNF-alpha, herein we sought to determine whether hyperoxia modulates IL-1beta-dependent signal transduction. In A549 cells, simultaneous treatment with hyperoxia and IL-1beta caused increased activation of IKK, prolonged the degradation of IkappaBalpha, and prolonged the nuclear translocation and DNA binding of NF-kappaB compared with cells treated with IL-1beta alone in room air. Hyperoxia did not affect IL-1beta-dependent degradation of the interleukin receptor-associated kinase differently from treatment with IL-beta alone. In contrast to the effects on the IKK/IkappaBalpha/NF-kappaB pathway, simultaneous treatment with hyperoxia and IL-1beta did not augment NF-kappaB-dependent gene expression compared with treatment with IL-1beta alone. Similar observations were made in a different human respiratory epithelial cell line, BEAS-2B cells. In addition, simultaneous treatment with hyperoxia and IL-1beta caused hyperphosphorlyation of the NF-kappaB p65 subunit compared with treatment with IL-1beta alone. In summary, concomitant treatment of A549 cells with hyperoxia and IL-1beta augments activation of IKK, prolongs degradation of IkappaBalpha, and prolongs nuclear translocation and DNA binding of NF-kappaB. This activation, however, is not coupled to increased expression of NF-kappaB-dependent genes, and the mechanism of this decoupling is not related to decreased phosphorylation of p65.  相似文献   

6.
Chen C  Chou C  Sun Y  Huang W 《Cellular signalling》2001,13(8):543-553
TNF-alpha induced an increase in intercellular adhesion molecule-1 (ICAM-1) expression in human A549 epithelial cells and immunofluorescence staining confirmed this result. The enhanced ICAM-1 expression was shown to increase the adhesion of U937 cells to A549 cells. Tyrosine kinase inhibitors (genistein or tyrphostin 23) or phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor (D 609) attenuated TNF-alpha-induced ICAM-1 expression. TNF-alpha produced an increase in protein kinase C (PKC) activity and this effect was inhibited by D 609. PKC inhibitors (staurosporine, Ro 31-8220, calphostin C, or Go 6976) also inhibited TNF-alpha-induced response. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a PKC activator, stimulated ICAM-1 expression, this effect was inhibited by genistein or tyrphostin 23. Treatment of cells with TNF-alpha resulted in stimulation of p44/42 MAPK, p38, and JNK. However, TNF-alpha-induced ICAM-1 expression was not affected by either MEK inhibitor, PD 98059, or p38 inhibitor, SB 203580. A cell-permeable ceramide analog, C(2) ceramide, also stimulated the activation of these three MAPKs, but had no effect on ICAM-1 expression. NF-kappaB DNA-protein binding and ICAM-1 promoter activity were enhanced by TNF-alpha and these effects were inhibited by D 609, calphostin C, or tyrphostin 23, but not by PD 98059 or SB 203580. TPA also stimulated NF-kappaB DNA-protein binding and ICAM-1 promoter activity, these effects being inhibited by genistein or tyrphostin 23. TNF-alpha- or TPA-induced ICAM-1 promoter activity was inhibited by dominant negative PKCalpha or IKK2, but not IKK1 mutant. IKK activity was stimulated by both TNF-alpha and TPA, and these effects were inhibited by Ro 31-8220 or tyrphostin 23. These data suggest that, in A549 cells, TNF-alpha activates PC-PLC to induce activation of PKCalpha and protein tyrosine kinase, resulting in the stimulation of IKK2, and NF-kappaB in the ICAM-1 promoter, then initiation of ICAM-1 expression and neutrophil adhesion. However, activation of p44/42 MAPK, p38, and JNK is not involved in this event.  相似文献   

7.
8.
9.
10.
Interferon-gamma (IFN-gamma) induced intercellular adhesion molecule-1 (ICAM-1) expression in human NCI-H292 epithelial cells, as shown by enzyme-linked immunosorbent assay and immunofluorescence staining. The enhanced ICAM-1 expression resulted in increased adhesion of U937 cells to NCI-H292 cells. Tyrosine kinase inhibitors (genistein or herbimycin), Src family inhibitor (PP2), or a phosphatidylinositol-phospholipase C inhibitor (U73122) attenuated the IFN-gamma-induced ICAM-1 expression. Protein kinase C (PKC) inhibitors (staurosporine or Ro 31-8220) also inhibited IFN-gamma-induced response. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a PKC activator, stimulated ICAM-1 expression; this effect was inhibited by tyrosine kinase or Src inhibitor. ICAM-1 promoter activity was enhanced by IFN-gamma and TPA in cells transfected with pIC339-Luc, containing the downstream NF-kappaB and gamma-activated site (GAS) sites, but not in cells transfected with GAS-deletion mutant, pIC135 (DeltaAP2). Electrophoretic gel mobility shift assay demonstrated that GAS-binding complexes in IFN-gamma-stimulated cells contained STAT1alpha. The IFN-gamma-induced ICAM-1 promoter activity was inhibited by tyrosine kinase inhibitors, a phosphatidylinositol-phospholipase C inhibitor, or PKC inhibitors, and the TPA-induced ICAM-1 promoter activity was also inhibited by tyrosine kinase inhibitors. Cotransfection with a PLC-gamma2 mutant inhibited IFN-gamma- but not TPA-induced ICAM-1 promoter activity. However, cotransfection with dominant negative mutants of PKCalpha or c-Src inhibited both IFN-gamma- and TPA-induced ICAM-1 promoter activity. The ICAM-1 promoter activity was stimulated by cotransfection with wild type PLC-gamma2, PKCalpha, c-Src, JAK1, or STAT1. An immunocomplex kinase assay showed that both IFN-gamma and TPA activated c-Src and Lyn activities and that these effects were inhibited by staurosporine and herbimycin. Thus, in NCI-H292 epithelial cells, IFN-gamma activates PLC-gamma2 via an upstream tyrosine kinase to induce activation of PKC-alpha and c-Src or Lyn, resulting in activation of STAT1alpha, and GAS in the ICAM-1 promoter, followed by initiation of ICAM-1 expression and monocyte adhesion.  相似文献   

11.
12.
Activation of the stress response attenuates proinflammatory responses by suppressing cytokine-stimulated activation of the NF-kappaB signaling pathway. In this study, we show that the activation of the cellular stress response, either by heat shock treatment or after exposure to sodium arsenite, leads to a transient inhibition of IkappaBalpha phosphorylation. Inhibition of IkappaBalpha phosphorylation after stress was associated with the detergent insolubilization of the upstream kinases, IkappaB kinase alpha (IKKalpha) and IkappaB kinase beta, components involved in IkappaBalpha phosphorylation. Pretreatment of cells with glycerol, a chemical chaperone that reduces the extent of stress-induced protein denaturation, reduced the stress-dependent detergent insolubility of the IKK complex and restored the cytokine-stimulated phosphorylation of IkappaB. The stress-dependent insolubility of the IKK complex appeared reversible; as the cells recovered from the heat shock treatment, the IKK complex reappeared within the soluble fraction of cells and was again capable of mediating the phosphorylation of IkappaBalpha in response to added cytokines. Treatment of cells with geldanamycin, an inhibitor of heat shock protein 90 (Hsp90) function, also resulted in IKK detergent insolubility and proteasome-mediated degradation of the IKK complex. Furthermore, while IKKalpha coprecipitated with Hsp90 in control cells, coprecipitation of the two proteins was greatly reduced in those cells early after stress or following exposure to geldanamycin. Stress-induced transient insolubilization of the IkappaB kinase complex following its dissociation from Hsp90 represents a novel mechanism by which the activation of the stress response inhibits the NF-kappaB signaling pathway in response to proinflammatory stimuli.  相似文献   

13.
The signaling pathway involved in TNF-alpha-induced cyclooxygenase-2 (COX-2) expression was further studied in human NCI-H292 epithelial cells. A protein kinase C (PKC) inhibitor (staurosporine), tyrosine kinase inhibitors (genistein and herbimycin A), or a Src kinase inhibitor (PP2) attenuated TNF-alpha- or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced COX-2 promoter activity. TNF-alpha- or TPA-induced I-kappaB kinase (IKK) activation was also blocked by these inhibitors, which reversed I-kappaBalpha degradation. Activation of c-Src and Lyn kinases, two Src family members, was inhibited by the PKC, tyrosine kinase, or Src kinase inhibitors. The dominant-negative c-Src (KM) mutant inhibited induction of COX-2 promoter activity by TNF-alpha or TPA. Overexpression of the constitutively active PKCalpha (PKCalpha A/E) or wild-type c-Src plasmids induced COX-2 promoter activity, and these effects were inhibited by the dominant-negative c-Src (KM), NF-kappaB-inducing kinase (NIK) (KA), or IKKbeta (KM) mutant. The dominant-negative PKCalpha (K/R) or c-Src (KM) mutant failed to block induction of COX-2 promoter activity caused by wild-type NIK overexpression. In coimmunoprecipitation experiments, IKKalpha/beta was found to be associated with c-Src and to be phosphorylated on its tyrosine residues after TNF-alpha or TPA treatment. Two tyrosine residues, Tyr(188) and Tyr(199), near the activation loop of IKKbeta, were identified to be crucial for NF-kappaB activation. Substitution of these residues with phenylalanines attenuated COX-2 promoter activity and c-Src-dependent phosphorylation of IKKbeta induced by TNF-alpha or TPA. These data suggest that, in addition to activating NIK, TNF-alpha also activates PKC-dependent c-Src. These two pathways cross-link between c-Src and NIK and converge at IKKalpha/beta, and go on to activate NF-kappaB, via serine phosphorylation and degradation of IkappaB-alpha, and, finally, to initiate COX-2 expression.  相似文献   

14.
The interferon (IFN)-inducible double-stranded-RNA (dsRNA)-activated serine-threonine protein kinase (PKR) is a major mediator of the antiviral and antiproliferative activities of IFNs. PKR has been implicated in different stress-induced signaling pathways including dsRNA signaling to nuclear factor kappa B (NF-kappaB). The mechanism by which PKR mediates activation of NF-kappaB is unknown. Here we show that in response to poly(rI). poly(rC) (pIC), PKR activates IkappaB kinase (IKK), leading to the degradation of the inhibitors IkappaBalpha and IkappaBbeta and the concomitant release of NF-kappaB. The results of kinetic studies revealed that pIC induced a slow and prolonged activation of IKK, which was preceded by PKR activation. In PKR null cell lines, pIC failed to stimulate IKK activity compared to cells from an isogenic background wild type for PKR in accord with the inability of PKR null cells to induce NF-kappaB in response to pIC. Moreover, PKR was required to establish a sustained response to tumor necrosis factor alpha (TNF-alpha) and to potentiate activation of NF-kappaB by cotreatment with TNF-alpha and IFN-gamma. By coimmunoprecipitation, PKR was shown to be physically associated with the IKK complex. Transient expression of a dominant negative mutant of IKKbeta or the NF-kappaB-inducing kinase (NIK) inhibited pIC-induced gene expression from an NF-kappaB-dependent reporter construct. Taken together, these results demonstrate that PKR-dependent dsRNA induction of NF-kappaB is mediated by NIK and IKK activation.  相似文献   

15.
16.
17.
NF-kappaB-inducing kinase (NIK) has been implicated as an essential component of NF-kappaB activation. However, the regulatory mechanism of NIK signaling remains elusive. We have identified a novel NIK interacting protein, TNAP (for TRAFs and NIK-associated protein). In mammalian cells, TNAP physically interacts with NIK, TRAF2, and TRAF3 but not IKK1 or IKK2. TNAP specifically inhibits NF-kappaB activation induced by tumor necrosis factor (TNF)-alpha, TNF receptor 1, TRADD, RIP, TRAF2, and NIK but does not affect IKK1- and IKK2-mediated NF-kappaB activation. Knockdown of TNAP by lentiviral-mediated small interference RNA potentiates TNF-alpha-induced NF-kappaB activation. TNAP suppresses NIK kinase activity and subsequently reduces p100 processing, p65 phosphorylation, and IkappaBalpha degradation. These data suggest that TNAP is a repressor of NIK activity and regulates both the classical and alternative NF-kappaB signaling pathways.  相似文献   

18.
19.
20.
The role of p44/42 mitogen-activated protein kinase (MAPK) in the expression of intercellular adhesion molecule-1 (ICAM-1) in NCI-H292 cells, a human bronchial epithelial cell line, was analyzed. Treatment with the protein kinase C (PKC) activator 12-O-tetradecanoylphorbol 13-acetate (TPA) (16.2 nM) or interferon-gamma (IFN-gamma) (100 U/ml) induced phosphorylation of p44/42 MAPK. The MEK inhibitor U0126 (0.1 to 10 microM) enhanced the TPA-induced ICAM-1 expression but not the IFN-gamma-induced one. U0126 also enhanced the ICAM-1 expression induced by two other PKC activators teleocidin (22.5 nM) and aplysiatoxin (14.9 nM). Furthermore, PD98059 (0.5 to 50 microM), another MEK inhibitor, enhanced the TPA-induced ICAM-1 expression as well. The inhibitor of p38 MAPK SB203580 did not affect the TPA-induced ICAM-1 expression. BAY11-7082, an inhibitor of nuclear factor kappaB (NF-kappaB) activation, and MG132, a 26S proteasome inhibitor, reduced the TPA-induced ICAM-1 expression but not the IFN-gamma-induced one. TPA partially decreased the level of IkappaB-alpha and the reduction was further augmented by U0126 in a concentration-dependent manner. These findings suggested that, in NCI-H292 cells, p44/42 MAPK suppresses PKC activator-induced NF-kappaB activation, thus negatively regulating the PKC activator-induced ICAM-1 expression but not the IFN-gamma-induced one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号