首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutants of Escherichia coli K12, defective in phosphatidylserine synthetase (pss), can be isolated as temperature-sensitive, conditional lethals. When cultivated at intermediate temperatures (30 degrees), such mutants contain approximately 3 times more phosphatidylglycerol plus cardiolipin (and less phosphatidylethanolamine) than normal. We now wish to report that, under these conditions, the pss-8 mutant is hypersensitive to certain antibiotics, especially to streptomycin, kanamycin, and gentamicin, although also to ampicillin and novobiocin. At 30 degrees, the membrane protein and fatty acid composition of pss-8 is nearly normal, i.e. identical with an isogenic pss+ organism. Radiochemical labeling and bacteriophage growth studies show that lipopolysaccharide is also unaltered. Therefore, the antibiotic hypersensitivity of pss-8 differs from previously reported hypersensitivities, associated with lipopolysaccharide defects. These results suggest that the polar phospholipid headgroups may play an important role in maintaining the barrier function of the outer gramnegative membrane and that putative inhibitors of the phosphatidylserine synthetase might potentiate the action of numerous antibiotics currently in clinical use.  相似文献   

2.
Escherichia coli mutants harboring the pss-1 allele (coding for a temperature-sensitive phosphatidylserine synthase) are temperature sensitive for growth and synthesize less phosphatidylethanolamine at higher temperatures, giving rise to abnormal membrane phospholipid compositions. To obtain information concerning the determinant for the phospholipid polar headgroup composition and the lethal factor in the defective membranes, we have examined the effect of increased supply of sn-glycerol 3-phosphate on the phospholipid synthesis and the growth ability of a pss-1 mutant. For this purpose, a pair of E. coli K-12 derivatives isogenic except for the pss-1 allele was constructed from strain BB26-36 to harbor the mutations related to glycerol metabolism (glpD3, glpR2, glpKi, and phoA8). Pulse- and uniform-labeling of phospholipids with 32P at 42 degrees C in a synthetic medium with (0.2%) or without glycerol showed that glycerol further lowered the temperature-sensitive formation of phosphatidylethanolamine, removed the phosphatidate and CDP-diacylglycerol accumulated in the absence of glycerol, and resulted in an increase in cardiolipin content in the pss-1 mutant. The phospholipid synthesis and contents in the pss+ strain were not significantly affected by glycerol. Glycerol in the medium markedly enhanced the growth defect of the pss-1 mutant, which was remediable by sucrose. The results indicate that the intracellular pool of sn-glycerol 3-phosphate is the limiting factor for acidic phospholipid synthesis in the pss-1 mutant, and cardiolipin unusually accumulated is injurious to the functional E. coli membranes. Possible determinants for the phospholipid composition of the wild-type E. coli cells are also discussed on the basis of the present observations.  相似文献   

3.
I Shibuya  C Miyazaki    A Ohta 《Journal of bacteriology》1985,161(3):1086-1092
Escherichia coli K-12 derivatives with a common genetic background carrying, either alone or in combination, the pss-1 allele coding for a temperature-sensitive phosphatidylserine synthase (A. Ohta and I. Shibuya, J. Bacteriol. 132:434-443, 1977) and cls- for a defective cardiolipin synthase (G. Pluschke et al., J. Biol. Chem. 253:5048-5055, 1978) were constructed. The phospholipid polar headgroup compositions of these strains were significantly different from each other depending on their genotypes and growth temperature, whereas other membrane characteristics such as the total phospholipid content, fatty acid composition, membrane protein profile, and lipopolysaccharide content were practically the same, suggesting that the phenotypes of these strains were the direct consequences of abnormalities in membrane phospholipid composition. The cls pss-1 double mutation caused an unusual accumulation of phosphatidylglycerol with an extremely low content of cardiolipin. The cls mutation alone was found to give a growth defect, and its introduction into a pss-1 mutant resulted in an enhanced temperature sensitivity of growth. Addition to a broth medium of a proper concentration of sucrose, NaCl, Mg2+, or Ca2+ allowed the growth of a pss-1 mutant at otherwise nonpermissive temperature, but a pss-1 cls double mutant required the combined addition of sucrose or NaCl and MgCl2 for full growth at 42 degrees C. The possible mechanisms for these physiological consequences of the mutations are discussed on a molecular basis. The remedial effects of culture supplements allowed the pss-1 mutants to grow at 42 degrees C resulting in enhanced abnormalities of membrane phospholipid composition.  相似文献   

4.
The levels of glutamate synthase and of glutamine synthetase are both derepressed 10-fold in strain JP1449 of Escherichia coli carrying a thermosensitive mutation in the glutamyl-transfer ribonucleic acid (tRNA) synthetase and growing exponentially but at a reduced rate at a partially restrictive temperature, compared with the levels in strain AB347 isogenic with strain JP1449 except for this thermosensitive mutation and the marker aro. These two enzymes catalyze one of the two pathways for glutamate biosynthesis in E. coli, the other being defined by the glutamate dehydrogenase. We observed a correlation between the percentage of charged tRNAGlu and the level of glutamate synthase in various mutants reported to have an altered glutamyl-tRNA synthetase activity. These results suggest that a glutamyl-tRNA might be involved in the repression of the biosynthesis of the glutamate synthase and of the glutamine synthetase and would couple the regulation of the biosynthesis of these two enzymes, which can work in tandem to synthesize glutamate when the ammonia concentration is low in E. coli but whose structural genes are quite distant from each other. No derepression of the level of the glutamate dehydrogenase was observed in mutant strain JP1449 under the conditions where the levels of the glutamine synthetase and of the glutamate synthase were derepressed. This result indicates that the two pathways for glutamate biosynthesis in E. coli are under different regulatory controls. The glutamate has been reported to be probably the key regulatory element of the biosynthesis of the glutamate dehydrogenase. Our results indicate that the cell has chosen the level of glutamyl-tRNA as a more sensitive probe to regulate the biosynthesis of the enzymes of the other pathway, which must be energized at a low ammonia concentration.  相似文献   

5.
The CpxA-CpxR two-component signal transduction pathway of Escherichia coli was studied in a mutant (pss-93) lacking phosphatidylethanolamine (PE). Several properties of this mutant are comparable to phenotypes of cpxA point mutants, indicating that this two-component pathway is activated in PE-deficient cells. In contrast to point mutants, cpx operon null mutants have a wild-type phenotype. By use of this information, a cpx operon null allele was introduced into a pss-93 mutant. Certain altered properties of PE-deficient mutants, which were consistent with activation of the Cpx pathway, returned to the wild-type phenotype, namely, active accumulation of proline and thiomethyl-beta-D-galactopyranoside was partially restored to wild-type levels, increased resistance to amikacin returned to wild-type sensitivity, and high levels of degP expression returned to repressed wild-type levels. Elevated levels of acetyl phosphate and nlpE gene product can result in activation of the Cpx pathway. However, inactivation of the nlpE gene or mutations eliminating the ability to make acetyl phosphate did not alter the high level of degP expression in pss-93 mutants. We propose that the lack of PE results in an alteration in cell envelope structure or physical properties, leading to direct activation of the Cpx pathway.  相似文献   

6.
A mutation in the pheS gene, encoding phenylalanyl-tRNA synthetase, in E. coli NP37 confers temperature-sensitivity on the organism. A five-fold increase in tRNA(phe) levels complements the mutation. Analysis of the kinetic properties of the mutant enzyme indicates that the KM is 20-fold higher than the wild-type and the dissociation constant of the tRNA(phe)-synthetase complex for the mutant is at least 10-fold higher. These results indicate that the mutation in E. coli NP37 directly affects the tRNA(phe) binding site on the cognate synthetase.  相似文献   

7.
Several types of 4-fluorophenylalanine resistant mutants were isolated. In one type of mutant DAHP synthetase (tyr) and prephenate dehydrogenase were coordinately derepressed. The mutation was linked to aroF and tyrA and was cis- dominant by merodiploid analysis, thus confirming that it is an operator constitutive mutation (tyrOc). A second type of mutation showed highly elevated levels of tyrosine pathway enzymes which were not repressed by L-tyrosine. It was unlinked to tyrA and aroF, and was trans-recessive in merodiploids. These properties were attributed to a mutation in a regulator gene, tyrR (linked to pyr F), that resulted in altered or non-functional aporepressor. Hence tyrO, tyrA, and aroF constitute an operon regulated by tyrR. In a third type of mutation chorismate mutase P-prephenate dehydratase was highly elevated. It was not linked to pheA, was located in the 95--100 min region of the Salmonella chromosome, and was recessive to the wild type gene in merodiploids. A mutation was, therefore, indicated in a regulatory gene, pheR, which specified an aporepressor for regulating pheA. DAHP synthetase (phe), specified by aroG, was not regulated by pheR, but was derepressed in one of the tyrR mutants, suggesting that as in Escherichia coli tyrR may regulate DAHP synthetase(phe) and DAHP synthetase (tyr) with the same aporepressor. A novel mutation in chorismate mutase is described.  相似文献   

8.
The Salmonella typhimurium prsB mutation was previously mapped at 45 min on the chromosome, and a prsB strain was reported to produce undetectable levels of phosphoribosylpyrophosphate (PRPP) synthetase activity and very low levels of immunologically cross-reactive protein in vitro (N.K. Pandey and R.L. Switzer, J. Gen. Microbiol, 128:1863-1871, 1982). We have shown by P22-mediated transduction that the prsB gene is actually an allele of prsA, the structural gene for PRPP synthetase, which maps at 35 min. The prsB (renamed prs-100) mutant produces about 20% of the activity and 100% of the cross-reactive material of wild-type strains. prs-100 mutant strains are temperature sensitive, as is the mutant PRPP synthetase in vitro. The prs-100 mutation is a C-to-T transition which results in replacement of Arg-78 in the mature wild-type enzyme by Cys. The mutant PRPP synthetase was purified to greater than 98% purity. It possessed elevated Michaelis constants for both ATP and ribose-5-phosphate, a reduced maximal velocity, and reduced sensitivity to the allosteric inhibitor ADP. The mutant enzyme had altered physical properties and was susceptible to specific cleavage at the Arg-101-to-Ser-102 bond in vivo. It appears that the mutation alters the enzyme's kinetic properties through substantial structural alterations rather than by specific perturbation of substrate binding or catalysis.  相似文献   

9.
A mutational leading to glutamine auxotrophy was located near a 5-fluorouracil resistance marker in the citB-thyA region of the Bacillus subtilis chromosome. This mutation resulted in a glutamine synthetase with altered kinetic and feedback properties. The specific activity of manganese-stimulated glutamine synthetase activity in crude extracts was 18-fold higher, and the magnesium-stimulated activity was about 30% that of the wild type. Quantitation of the enzyme by precipitation with antibody prepared against pure enzyme confirmed the presence of high enzyme levels in the mutant. This mutation is very closely linked (recombination index of 0.03) to another glutamine auxotroph containing enzyme with altered electrophoretic and heat sensitivity properties. Mutations in the structural gene for glutamine synthetase may result not only in altered catalytic and regulatory properties but also in altered production of the enzyme.  相似文献   

10.
Among mutants which require isoleucine, but not valine, for growth, we have found two distinguishable classes. One is defective in the biosynthetic enzyme threonine deaminase (l-threonine hydro-lyase, deaminating, EC 4.2.1.16) and the other has an altered isoleucyl transfer ribonucleic acid (tRNA) synthetase [l-isoleucine: soluble RNA ligase (adenosine monophosphate), EC 6.1.1.5]. The mutation which affects ileS, the structural gene for isoleucyl-tRNA synthetase, is located between thr and pyrA at 0 min on the map of the Escherichia coli chromosome. This mutationally altered isoleucyl-tRNA synthetase has an apparent K(m) for isoleucine ( approximately 1 mm) 300-fold higher than that of the enzyme from wild type; on the other hand, the apparent V(max) is altered only slightly. When the mutationally altered ileS allele was introduced into a strain which overproduces isoleucine, the resulting strain could grow without addition of isoleucine. We conclude that the normal intracellular isoleucine level is not high enough to allow efficient charging to tRNA(Ile) by the mutant enzyme because of the K(m) defect. A consequence of the alteration in isoleucyl-tRNA synthetase was a fourfold derepression of the enzymes responsible for isoleucine biosynthesis. Thus, a functional isoleucyl-tRNA synthetase is needed for isoleucine to act as a regulator of its own biosynthesis.  相似文献   

11.
Strain SF22, a glutamine-requiring (Gln-) mutant of Bacillus subtilis SMY, is likely to have a mutation in the structural gene for glutamine synthetase, since this strain synthesized 22 to 55% as much glutamine synthetase antigen as did wild-type cells in a 10-min period but had less than 3% of wild-type glutamine synthetase enzymatic activity. The expression of several genes subject to glucose catabolite repression was altered in the Gln- mutant. The induced levels of alpha-glucosidase, histidase, and aconitase were 3.5- to 4-fold higher in SF22 cells than in wild-type cells grown in glucose-glutamine medium, and citrate synthase levels were 8-fold higher in the Gln- mutant than in wild-type cells. The relief of glucose catabolite repression in the Gln- mutant may result from poor utilization of glucose. Examination of the intracellular metabolite pools of cells grown in glucose-glutamine medium showed that the glucose-6-phosphate pool was 2.5-fold lower, the pyruvate pool was 4-fold lower, and the 2-ketoglutarate pool was 2.5-fold lower in the Gln- cells than they were in wild-type cells. Intracellular levels of glutamine were sixfold higher in the Gln- mutant than in wild-type cells. Measurements of enzymes involved in glutamine transport and utilization showed that the elevated pools of glutamine in the Gln- mutant resulted from a threefold increase in glutamine permease and a fivefold decrease in glutamate synthase. The pleiotropic effect of the gln-22 mutation on the expression of several genes suggests that either the glutamine synthetase protein or its enzymatic product, glutamine, is involved in the regulation of several metabolic pathways in B. subtilis.  相似文献   

12.
Mutants of Escherichia coli defective in phosphatidylserine synthetase (pss) make less phosphatidylethanolamine than normal cells, and they are temperature sensitive for growth. We have isolated a new mutant, designated RA2021, which is better than previously available strains in that the residual phosphatidylethanolamine level approaches 25% after 4 h at 42 degrees C. The total amount of phospholipid normalized to the density of the culture is about the same in RA2021 (pss-21) as in the isogenic wild-type RA2000 (pss(+)). Consequently, there is a net accumulation of polyglycerophosphatides in the mutant, particularly of cardiolipin. The addition of 10 to 20 mM MgCl(2) to a culture of RA2021 prolongs growth under nonpermissive conditions and prevents loss of cell viability, but it does not eliminate the temperature-sensitive phenotype. Divalent cations, like Mg(2+), do not correct the phospholipid composition of the mutant, but may act indirectly by balancing the negative charges of phosphatidylglycerol and cardiolipin. To determine the effects of the pss mutation on membrane composition, we have examined the subcellular distribution of the polyglycerophosphatides that accumulate in these strains. All of the excess anionic lipids of RA2021 are associated with the envelope fraction and are distributed equally between the inner and outer membranes. The protein compositions of the isolated membranes do not differ significantly in the mutant and wild type. The fatty acid composition of RA2021 is almost the same as wild type at 30 degrees C, but there is more palmitic and cyclopropane fatty acid at 42 degrees C. These results demonstrate that the modification of the polar lipid composition observed in pss mutants affects both membranes and that cardiolipin, which is not ordinarily present in large quantities, can accumulate in the outer membrane when it is overproduced by the cell. The altered polar headgroup composition of the outer membrane in pss mutants may account, in part, for their hypersensitivity to the aminoglycoside antibiotics.  相似文献   

13.
14.
The enzyme serine transhydroxymethylase (EC 2.1.2.1; L-serine:tetrahydrofolate-5,10-hydroxymethyltransferase) is responsible both for the synthesis of glycine from serine and production of the 5,10-methylenetetrahydrofolate necessary as a methyl donor for methionine synthesis. Two mutants selected for alteration in serine transhydroxymethylase regulation also have phenotypes characteristic of metK (methionine regulatory) mutants, including ethionine, norleucine, and alpha-methylmethionine resistance and reduced levels of S-adenosylmethionine synthetase (EC 2.5.1.6; adenosine 5'-triphosphate:L-methionine S-adenosyltransferase) activity. Because this suggested the existence of a common regulatory component, the regulation of serine transhydroxymethylase was examined in other methionine regulatory mutants (metK and metJ mutants). Normally, serine transhydroxymethylase levels are repressed three- to sixfold in cells grown in the presence of serine, glycine, methionine, adenine, guanine, and thymine. This does not occur in metK and metJ mutants; thus, these mutations do affect the regulation of both serine transhydroxymethylase and the methionine biosynthetic enzymes. Lesions in the metK gene have been reported to reduce S-adenosylmethionine synthetase levels. To determine whether the metK gene actually encodes for S-adenosylmethionine synthetase, a mutant was characterized in which this enzyme has a 26-fold increased apparent Km for methionine. This mutation causes a phenotype associated with metK mutants and is cotransducible with the serA locus at the same frequency as metK lesions. Thus, the affect of metK mutations on the regulation of glycine and methionine synthesis in Salmonella typhimurium appears to be due to either an altered S-adenosylmethionine synthetase or altered S-adenosylmethionine pools.  相似文献   

15.
A plasmid vector for an extreme thermophile, Thermus thermophilus   总被引:7,自引:0,他引:7  
The host-vector system for an extreme thermophile, Thermus thermophilus HB27, was developed. The host strain has a mutation in tryptophan synthetase gene (trpB), and the mutation was determined to be a missense mutation by DNA sequence analysis. A Thermus-E. coli shuttle vector pYK109 was constructed. pYK109 consists of Thermus cryptic plasmid pTT8, tryptophan synthetase gene (trpB) of Thermus T2 and E. coli plasmid vector pUC13. pYK109 transformed T. thermophilus HB27 trpB5 to Trp+ at a frequency of 10(6) transformants per microgram DNA.  相似文献   

16.
Mutants of Escherichia coli exhibiting temperature-sensitive repression of the tryptophan operon have been isolated among the revertants of a tryptophan auxotroph, trpS5, that produces an altered tryptophanyl transfer ribonucleic acid (tRNA) synthetase. Unlike the parental strain, these mutants grew in the absence of tryptophan at high but not at low temperature. When grown at 43.5 C with excess tryptophan (repression conditions), they produced 10 times more anthranilate synthetase than when grown at 36 C or lower temperatures. Similar, though less striking, temperature-sensitivity was observed with respect to the formation of tryptophan synthetase. Transduction mapping by phage P1 revealed that these mutants carry a mutation cotransducible with thr at 60 to 80%, in addition to trpS5, and that the former mutation is primarily responsible for the temperature-sensitive repression. These results suggest that the present mutants represent a novel type of mutation of the classical regulatory gene trpR, which probably determines the structure of a protein involved in repression of the tryptophan operon. In agreement with this conclusion, tRNA of several trpR mutants was found to be normal with respect to its tryptophan acceptability. It was also shown that the trpS5 allele, whether present in trpR or trpR(+) strains, produced appreciably higher amounts of anthranilate synthetase than the corresponding trpS(+) strains under repression conditions. This was particularly true at higher temperatures. These results provide further evidence for our previous conclusion that tryptophanyl-tRNA synthetase is somehow involved in repression of this operon.  相似文献   

17.
The activity of acetohydroxy acid isomeroreductase, an essential enzyme for isoleucine and valine biosynthesis in Escherichia coli, was examined in a series of mutants containing derepressed levels of acetohydroxy acid synthetase activity but which differed from each other in the sensitivity of the synthetases to valine inhibition. The finding that isomeroreductase was highest in the strain with the synthetase that was least sensitive to valine inhibition supported the model of internal induction of the isomeroreductase by its acetohydroxy acid substrates. The mutation leading to the acetohydroxy acid synthetase least sensitive to valine was found to be unlinked to the ilv gene cluster and appeared to result in a synthetase that differed from the normal enzyme in several properties. The locus of this mutation is designated ilvF. The loci leading to derepression were designated azl. A pleiotropic, apparently single-step, mutation was found that led to restoration of end-product sensitivity to the synthetase, loss of end-product sensitivity of threonine deaminase [EC 4.2.1.16, l-threonine hydro-lyase (deaminating) and loss of isomeroreductase activity.  相似文献   

18.
In Escherichia coli, mutations which lower the level of CDP-diglyceride synthetase are designated cds and map at min 4. The cds-8 mutation resulted in strikingly defective enzyme activity and also rendered cells pH sensitive for growth. Both the inhibition of growth and the massive accumulation of phosphatidic acid which occur in a cds-8 mutant at pH 8 were suppressed by mutations at a second locus, designated cdsS, which mapped between argG and gltB near min 68. The cdsS3 mutation by itself did not affect CDP-diglyceride synthetase activity in wild-type cells, but it caused a twofold stimulation of the residual activity present in strains harboring cds-8. Both the insensitivity to pH and the twofold stimulation of residual activity were lost by introduction of an F' strain carrying cdsS+ into a recA1 cds-8 cdsS3 host. When a culture of a cds-8 cdsS+ strain was shifted to pH 8, the residual specific activity of synthetase dropped by 75% within 100 min. In a cds-8 cdsS3 double mutant under the same conditions, the activity declined appreciably less, about to the level found in the cds-8 cdsS+ strain under permissive conditions (pH 6). Thus, it appears that mutations in the cdsS gene suppress the pH sensitivity of cds mutants by inhibiting the decay of residual CDP-diglyceride synthetase activity at the nonpermissive pH. The cdsS locus appears to be distinct from any known nonsense or missense suppressor.  相似文献   

19.
20.
H Edwards  P Schimmel 《Cell》1987,51(4):643-649
We have investigated the function of an E. coli aminoacyl-tRNA synthetase in S. cerevisiae strains that are respiration-deficient because of a mutation or a gene disruption in the nuclear encoded gene for the mitochondrial tyrosyl-tRNA synthetase. Although the yeast mitochondrial and E. coli tyrosine tRNAs differ significantly in sequence, expression of the E. coli tyrosyl-tRNA synthetase from a gene fusion restores respiration. The fusion gene contains a presumptive sequence for mitochondrial import from the mitochondrial tyrosyl-tRNA synthetase gene fused to the E. coli coding region. The fusion protein is incorporated into mitochondria. This incorporation and the rescue of the respiratory defect require the presumptive sequence for mitochondrial import. These experiments suggest a more limited definition of the identity of a tyrosine tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号