首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we report the ultrastructural and growth alterations caused by cysteine peptidase inhibitors on the plant trypanosomatid Phytomonas serpens. We showed that the cysteine peptidase inhibitors at 10 microM were able to arrest cellular growth as well as promote alterations in the cell morphology, including the parasites becoming short and round. Additionally, iodoacetamide induced ultrastructural alterations, such as disintegration of cytoplasmic organelles, swelling of the nucleus and kinetoplast-mitochondrion complex, which culminated in parasite death. Leupeptin and antipain induced the appearance of microvillar extensions and blebs on the cytoplasmic membrane, resembling a shedding process. A 40 kDa cysteine peptidase was detected in hydrophobic and hydrophilic phases of P. serpens cells after Triton X-114 extraction. Additionally, we have shown through immunoblotting that anti-cruzipain polyclonal antibodies recognised two major polypeptides in P. serpens, including a 40 kDa component. Flow cytometry analysis confirmed that this cruzipain-like protein has a location on the cell surface. Ultrastructural immunocytochemical analysis demonstrated the presence of the cruzipain-like protein on the surface and in small membrane fragments released from leupeptin-treated parasites. Furthermore, the involvement of cysteine peptidases of P. serpens in the interaction with explanted salivary glands of the phytophagous insect Oncopeltus fasciatus was also investigated. When P. serpens cells were pre-treated with either cysteine peptidase inhibitors or anti-cruzipain antibody, a significant reduction of the interaction process was observed. Collectively, these results suggest that cysteine peptidases participate in several biological processes in P. serpens including cell growth and interaction with the invertebrate vector.  相似文献   

2.
The present review provides an overview of recent discoveries concerning the immunological similarities between Phytomonas serpens, a tomato parasite, and human trypanosomatid pathogens, with special emphasis on peptidases. Leishmania spp. and Trypanosoma cruzi express peptidases that are well-known virulence factors, named leishmanolysin and cruzipain. P. serpens synthesizes two distinct classes of proteolytic enzymes, metallo- and cysteine-type peptidases, that share common epitopes with leishmanolysin and cruzipain, respectively. The leishmanolysin-like and cruzipain-like molecules from P. serpens participate in several biological processes including cellular growth and adhesion to the salivary glands of Oncopeltus fasciatus, a phytophagous insect experimental model. Since previous reports demonstrated that immunization of mice with P. serpens induced a partial protective immune response against T. cruzi, this plant trypanosomatid may be a suitable candidate for vaccine studies. Moreover, comparative approaches in the Trypanosomatidae family may be useful to understand kinetoplastid biology, biochemistry and evolution.  相似文献   

3.
Phytomonas serpens synthesizes metallo- and cysteine-proteases that are related to gp63 and cruzipain, respectively, two virulence factors produced by pathogenic trypanosomatids. Here, we described the cellular distribution of gp63- and cruzipain-like molecules in P. serpens through immunocytochemistry and confocal fluorescence microscopy. Both proteases were detected in distinct cellular compartments, presenting co-localization in membrane domains and intracellular regions. Subsequently, we showed that exogenous proteins modulated the production of both protease classes, but in different ways. Regarding the metalloprotease, only fetal bovine serum (FBS) influenced the gp63 expression, reducing its surface exposition (≈30%). Conversely, the cruzipain-like molecule was differentially modulated according to the proteins: human and bovine albumins reduced its expression around 50% and 35%, respectively; mucin and FBS did not alter its production, while IgG and hemoglobin drastically enhanced its surface exposition around 7- and 11-fold, respectively. Additionally, hemoglobin induced an augmentation in the cell-associated cruzipain-like activity in a dose-dependent manner. A twofold increase of the secreted cruzipain-like protein was detected after parasite incubation with 1% hemoglobin compared to the parasites incubated in PBS-glucose. The results showed the ability of P. serpens in modulating the expression and the activity of proteolytic enzymes after exposition to exogenous proteins, with emphasis in its cruzipain-like molecules.  相似文献   

4.
Okuda, K., Esteva, M., Segura, E. L., and Bijovsky, A. T. 1999. The cytostome of Trypanosoma cruzi epimastigotes is associated with the flagellar complex. Experimental Parasitology 92, 223-231. Proliferative forms of Trypanosoma cruzi, amastigotes and epimastigotes, have a cytostome, a specialized structure formed by an invagination of the flagellar pocket's membrane surrounded by microtubules and frequently followed by a row of vesicles. All this assemblage penetrates deeply into the cytoplasm overpassing the nucleus. This structure, together with the flagellar pocket, appears to play an important role in the nutrition of the parasite. We demonstrated that the monoclonal antibody 2C4, made-up against isolated flagellar complex of T. cruzi epimastigotes, recognizes a protein doublet of 76 and 87 kDa in total epimastigotes homogenate. The 76-kDa polypeptide is enriched in the detergent-soluble fraction whereas the 87-kDa polypeptide is highly represented in the insoluble fractions and the purified flagella. Immuno-fluorescence assays show the antigen as a small spot at the flagellar pocket region. Immunogold labeling of ultrathin sections of epimastigote forms reveals gold particles at the opening of flagellar pocket, concentrated in the cytostome region. Immunocytochemistry of epimastigote whole-mount cytoskeletons reveals the labeling on an array of three to four microtubules that appears attached to flagellum, running in the direction of the nucleus. Ultrastructural observations have shown that the posterior region of isolated flagella, corresponding to the level of the flagellar pocket, possesses a microtubular structure compatible with that from the cytostome. The relationship between the cytostome, an endocytic organelle, and the flagellum is here described for the first time.  相似文献   

5.
The genus Phytomonas comprises trypanosomatids that can parasitize a broad range of plant species. These flagellates can cause diseases in some plant families with a wide geographic distribution, which can result in great economic losses. We have demonstrated previously that Phytomonas serpens 15T, a tomato trypanosomatid, shares antigens with Trypanosoma cruzi, the agent of human Chagas disease. Herein, two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) were used to identify proteins of P. serpens 15T that are recognized by sera from patients with Chagas disease. After 2D-electrophoresis of whole-cell lysates, 31 peptides were selected and analyzed by tandem mass spectrometry. Twenty-eight polypeptides were identified, resulting in 22 different putative proteins. The identified proteins were classified into 8 groups according to biological process, most of which were clustered into a cellular metabolic process category. These results generated a collection of proteins that can provide a starting point to obtain insights into antigenic cross reactivity among trypanosomatids and to explore P. serpens antigens as candidates for vaccine and immunologic diagnosis studies.  相似文献   

6.
Patients with Chagas' disease or different clinical forms of American cutaneous leishmaniasis have high antilaminin antibody levels. An immunogold technique employing a specific antilaminin antibody was used in the present study to determine the presence, and define the ultrastructural localization, of laminin-like molecule(s) in American Leishmania spp. and Trypanosoma cruzi. Laminin was found located specifically in T. cruzi trypomastigotes on the external surface of the plasma membrane, close to the sites where the flagellar veil attaches to the plasma membrane. Laminin immunoreactivity was rapidly lost when trypomastigotes were cultured in liquid medium and no reactivity was found in fresh epimastigotes. Promastigotes and amastigotes of American Leishmania spp. also showed a specific localization of laminin immunoreactivity, this being limited to the lips of the flagellar pocket and to the parasitic side exactly opposite to the flagellar exit. These results confirm the presence of a laminin-like molecule(s) in both trypanosomatids, the specific localization suggesting a presently unknown function for this protein.  相似文献   

7.
The Wachstein and Meisel incubation medium was used to detect ATPase activity in epimastigote, spheromastigote (amastigote), and bloodstream trypomastigote forms of Trypanosoma cruzi. Reaction product, indicative of enzyme activity, was associated with the plasma membrane covering the cell body and the flagellum of the parasite. No reaction product was found in the portion of the plasma membrane lining the flagellar pocket. The plasma membrane-associated ATPase activity was not inhibited by ouabain or oligomycin, was detected in incubation medium without K+, was inhibited by prolonged glutaraldehyde fixation, and its activity was diminished when Mg2+ was omitted from the incubation medium. The Ernst medium was used to detect Na+-K+-ATPase activity in T. cruzi. No reaction product indicative of the presence of this enzyme was detected. Reaction product indicative of 5'-nucleotidase was not detected in T. cruzi. Acid phosphatase activity was detected in lysosomes. Those results indicate that a Mg2+-activated ATPase is present in the plasma membrane of T. cruzi and that it can be used as an enzyme marker, provided that the mitochondrial and flagellar ATPases are inhibited, to assess the purity of plasma membrane fractions isolated from this parasite.  相似文献   

8.
In the present study we have used the Tcr7 monoclonal antibody (mAb) previously characterized as directed against Trypanosoma cruzi 24-25-kDa specific antigens, both are immunogenic in man and during experimental T cruzi infections. We have demonstrated that mAb Tcr7 was able to recognize two in vitro translation products of molecular weights of 24 and 25 kDa. This suggested the holoproteic nature of these two related antigens bearing at least a common epitope and allowed us to use Tcr7 for an immunoscreening of a lambda ZAPII T cruzi cDNA library. Indeed, we have obtained several positive clones and completely sequenced the largest one which encoded theoretically for a protein of 23.7 kDa. The sequence analysis revealed a nearly perfect homology between this clone and one already described by other investigators and was shown to express a major flagellar protein of T cruzi able to bind calcium. Using different overlapping peptides derived from the sequence of the cDNA clone, we have localized the immunoreactivity of mAb Tcr7 mainly on several primary sequences present in the N-terminal part of the sequence, suggesting that the mAb could recognize a discontinuous epitope. Moreover, the immunoelectron microscopy allowed us to show that the antigen(s) carrying the epitope reacting with mAb Tcr7 is (are) released in association with membrane vesicles which protruded from the parasite surface and the flagellar pocket. This new mechanism of antigen shedding is likely to be independent of phospholipase C-mediated release of GPI-anchored molecules.  相似文献   

9.
A low density membrane fraction, isolated from the bloodstream stage of Trypanosoma rhodesiense and enriched in flagellar pocket membrane, was characterized with regard to antigenicity using antibodies raised against purified flagellar pocket membrane. Mild trypsinolysis of flagellar pocket membrane released two small peptides (Mr = 13-16 X 10(3)) separated by chromatofocusing (pI = 6.8 and 5.8) that were antigenic as monitored by fused rocket immunoelectrophoresis. Both of these antigenic peptides were enriched in relative fluorescence when flagellar pocket membrane was prepared from surface labeled (fluorescamine-beta-cyclodextrin) trypanosomes, indicating that cleaved peptides were on the external (luminal) side of the flagellar pocket membrane. More extensive release of fluorescamine labeled flagellar pocket membrane components was affected using mild detergent treatment (0.15% Zwittergent 3-12/0.4% Triton X-100), crossed immunoelectrophoresis separating two prominent antigens was more pronounced after incubation of flagellar pocket membrane with either porcine pancreas phospholipase A2 or umbilical cord sphingomyelinase. The use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent electroblotting to nitrocellulose also revealed two principal flagellar pocket membrane antigens (Mr approximately 60 and 66 X 10(3)), the latter showing greater release after exposure to sphingomyelinase or phospholipase, compared to mild detergent or 50 mM acetate, pH 5.0. Both antigens were glycoprotein as judged by electroblotting and the use of concanavalin A conjugated horseradish peroxidase as probe. Neither flagellar pocket membrane antigen was found to react with monoclonal antibodies prepared against T. rhodesiense variable surface antigen. The use of flagellar pocket membrane in the presence of Freund's complete adjuvant was found to protect mice against challenge infections with either the CP344 clone or uncloned CT Well-come isolate of T. rhodesiense.  相似文献   

10.
Clathrin is a scaffold protein found in different types of coated vesicles in most eukaryotic cells. Major forces that drive clathrin coat formation are the adaptor protein complexes. Trypanosoma cruzi is a flagellate protozoan that ingests macromolecules through receptor-mediated endocytosis, but the molecules involved in this process are still poorly known. Bioinformatics was used to identify proteins in the T. cruzi genome database, permitting discrimination of the genes involved in clathrin coat assembly. Clathrin expression was demonstrated in T. cruzi epimastigotes by using several experimental approaches. Western blot analysis showed a single 180-kDa protein band, which corresponds to the molecular mass of mammalian clathrin heavy chain. A flow cytometry assay demonstrated that the clathrin heavy chain was expressed in 97.74% of the cell population analyzed, with a high-fluorescence signal. Immunofluorescence observation showed labeling clustered at the flagellar pocket and Golgi complex region. Coated vesicles budding off from the flagellar pocket and the trans Golgi network membranes were identified by transmission electron microscopy. Our data demonstrate the expression of clathrin in T. cruzi epimastigotes and show the association of this polypeptide with the parasite endocytic and exocytic pathways.  相似文献   

11.
Polyclonal antibodies obtained against antigenic proteins encoded by six recombinant DNA clones of Trypanosoma cruzi were used for the ultrastructural localization of the respective antigens in thin sections of parasites (epimastigote, amastigote and trypomastigote forms of T. cruzi) embedded at low temperature in Lowicryl K4M resin. Antigens of high molecular weight containing tandemly repeated amino acid sequence motifs and recognized by sera from patients with Chagas' disease, were located only in the flagellum, where it contacts the parasite cell body. Other antigens were located on the surface of the parasite while still others were found within the flagellar pocket, as is the case with an antigen released during the acute phase of Chagas' disease. Thus, we conclude that some of the T. cruzi proteins which are antigenic in human infections are located in defined regions of the parasite. Some of the antigens were not expressed to the same extent in the three different developmental stages of the parasite.  相似文献   

12.
The flagellar attachment zone (FAZ) is an adhesion region of Trypanosoma cruzi epimastigote forms where the flagellum emerges from the flagellar pocket and remains attached to the cell body. This region shows a junctional complex which is formed by a linear series of apposed macular structures that are separated by amorphous material and clusters of intramembranous particles. Two protein groups appear to be important in the FAZ region: a membrane glycoprotein of 72kDa and several high molecular weight proteins. To gain a better understanding of the FAZ region, we compared wild-type Y strain T. cruzi epimastigotes with a mutant cell in which the 72-kDa surface glycoprotein (Gp72), involved in cell body-flagellum adhesion, had been deleted by target gene replacement. Using immunofluorescence confocal microscopy and electron microscopy techniques to analyze the FAZ region the results suggest that, in the absence of Gp72, other proteins involved in the formation of FAZ remain concentrated in the flagellar pocket region. The analysis of a 3-D reconstruction model of wild-type epimastigotes showed that the endoplasmic reticulum and mitochondrion are in intimate association with FAZ, in contrast to the null mutant cells where the endoplasmic reticulum was not visualized.  相似文献   

13.
The ultrastructure of Trypanosoma brucei gambiense was investigated by the freeze-fracture method. Three different regions of the continuous plasma membrane; cell body proper, flagellar pocket, and flagellum were compared in density and distribution of the intramembranous particles (IMP's). The IMP-density was highest in the flagellar pocket membrane and lowest in flagellum. Intra membranous particles of the cell body membrane were distributed uniformly on both the protoplasmic (P) and exoplasmic (E) faces. On the P face of the flagellar membrane, a single row of IMP-clusters was seen along the juncture of the flagllum to the cell body. Since the spacing of the IMP-clusters was almost equal to the spacing of the paired rivet structures observed in thin section, these clusters likely are related to the junction of flagellum and cell body. At the neck of the flagellar pocket, several linear arrays of IMP's were found on the P face of the flagellar membrane, while on the E face rows of depressions were seen. At the flagellar base, the clusters of IMP's were only seen on the P face. On the flagellar pocket membrane, particle-rich depressions and linear particle arrays were also found on the P face, while on the E face such special particle arrangements were not recognized. These particle-rich depressions may correspond to the sites of pinocytosis of the bloodstream forms which have been demonstrated in thin sections.  相似文献   

14.
Trypanosomatids' amino acid permeases are key proteins in parasite metabolism since they participate in the adaptation of parasites to different environments. Here, we report that TcAAP3, a member of a Trypanosoma cruzi multigene family of permeases, is a bona fide arginine transporter. Most higher eukaryotic cells incorporate cationic amino acids through a single transporter. In contrast, T. cruzi can recognize and transport cationic amino acids by mono-specific permeases since a 100-fold molar excess of lysine could not affect the arginine transport in parasites that over-express the arginine permease (TcAAP3 epimastigotes). In order to test if the permease activity regulates downstream processes of the arginine metabolism, the expression of the single T. cruzi enzyme that uses arginine as substrate, arginine kinase, was evaluated in TcAAP3 epimastigotes. In this parasite model, intracellular arginine concentration increases 4-folds and ATP level remains constant until cultures reach the stationary phase of growth, with decreases of about 6-folds in respect to the controls. Interestingly, Western Blot analysis demonstrated that arginine kinase is significantly down-regulated during the stationary phase of growth in TcAAP3 epimastigotes. This decrease could represent a compensatory mechanism for the increase in ATP consumption as a consequence of the displacement of the reaction equilibrium of arginine kinase, when the intracellular arginine concentration augments and the glucose from the medium is exhausted. Using immunofluorescence techniques we also determined that TcAAP3 and the specific lysine transporter TcAAP7 co-localize in a specialized region of the plasma membrane named flagellar pocket, staining a single locus close to the flagellar pocket collar. Taken together these data suggest that arginine transport is closely related to arginine metabolism and cell energy balance. The clinical relevance of studying trypanosomatids' permeases relies on the possibility of using these molecules as a route of entry of therapeutic drugs.  相似文献   

15.
Several monoclonal antibodies were prepared against the flagellar fraction of Trypanosoma cruzi epimastigotes (Tulahuén strain, stock Tul 2). One of them, FCH-F8-4, has previously shown biologic activity against the parasite (complement-mediated lysis and neutralization of the trypomastigote infectivity). Immunopurified antigens using this monoclonal antibody elicited a protective immune response in mice. Two recombinant cDNA clones were detected with this anti-flagellar fraction monoclonal antibody on a lambda gt11 expression library prepared from T. cruzi epimastigote mRNA. The insert of one of these cDNA clones, lambda(FCH-F8-4)1 (150 bp) coded for a 19-amino acid peptide (PAFLGCSSRFSGSFSGVEP). This insert hybridized with a 5.0-kb mRNA from epimastigotes. The beta-galactosidase fusion protein was produced in lysogenic bacteria. The monoclonal antibody recognized the epitope present in the fusion protein after western blotting of the crude lysate. A synthetic peptide (SP4) containing the complete sequence of lambda(FCH-F8-4)1 was constructed on solid phase. This peptide was able to inhibit the ELISA reactivity (in a range from 13 to 52%) of flagellar fraction immunized mouse sera and when administered (coupled to KLH or alone) to BALB/c mice with Bordetella pertussis as adjuvant, it induced a humoral and cellular immune response which was detected by ELISA, immunofluorescence, blotting, and DTH reactions against T. cruzi antigens. The immune response obtained indicates that this synthetic peptide resembles the parasite antigen conformation and could be useful for diagnosis purposes or be able to elicit immunoprotection against T. cruzi infection.  相似文献   

16.
We have characterized the cysteine peptidase production by Phytomonas serpens, a tomato trypanosomatid. The parasites were cultivated in four distinct media, since growth conditions could modulate the synthesis of bioactive molecules. The proteolytic profile has not changed qualitatively regardless the media, showing two peptidases of 38 and 40 kDa; however, few quantitative changes were observed including a drastic reduction (around 70%) on the 40 and 38 kDa peptidase activities when parasites were grown in yeast extract and liver infusion trypticase medium, respectively, in comparison with parasites cultured in Warren medium. The time-span of growth did not significantly alter the protein and peptidase expression. The proteolytic activities were blocked by classical cysteine peptidase inhibitors (E-64, leupeptin, and cystatin), being more active at pH 5.0 and showing complete dependence to reducing agents (dithiothreitol and l-cysteine) for full activity. The cysteine peptidases were able to hydrolyze several proteinaceous substrates, including salivary gland proteins from Oncopeltus fasciatus, suggesting broad substrate utilization. By means of agglutination, fluorescence microscopy, flow cytometry and Western blotting analyses we showed that both cysteine peptidases produced by P. serpens share common epitopes with cruzipain, the major cysteine peptidase of Trypanosoma cruzi. Moreover, our data suggest that the 40 kDa cysteine peptidase was located at the P. serpens cell surface, attached to membrane domains via a glycosylphosphatidylinositol anchor. The 40 kDa peptidase was also detected in the cell-free culture supernatant, in an active form, which suggests secretion of this peptidase to the extracellular environment.  相似文献   

17.
The flagellar calcium-binding protein (FCaBP) of Trypanosoma cruzi is localized to the flagellar membrane in all life cycle stages of the parasite. Myristoylation and palmitoylation of the N terminus of FCaBP are necessary for flagellar membrane targeting. Not all dually acylated proteins in T. cruzi are flagellar, however. Other determinants of FCaBP therefore likely contribute to flagellar specificity. We generated T. cruzi transfectants expressing the N-terminal 24 or 12 amino acids of FCaBP fused to GFP. Analysis of these mutants revealed that although amino acids 1-12 are sufficient for dual acylation and membrane binding, amino acids 13-24 are required for flagellar specificity and lipid raft association. Mutagenesis of several conserved lysine residues in the latter peptide demonstrated that these residues are essential for flagellar targeting and lipid raft association. Finally, FCaBP was expressed in the protozoan Leishmania amazonensis, which lacks FCaBP. The flagellar localization and membrane association of FCaBP in L. amazonensis suggest that the mechanisms for flagellar targeting, including a specific palmitoyl acyltransferase, are conserved in this organism.  相似文献   

18.
Proteolytic enzymes play a central role in the physiology of all living organisms, participating in several metabolic pathways and in different phases of parasite-host interactions. We have identified cell-associated peptidase activities in 33 distinct flagellates, including representatives of almost all known trypanosomatid genera parasitizing insects (Herpetomonas, Crithidia, Leishmania, Trypanosoma, Leptomonas, Phytomonas, Blastocrithidia and Endotrypanum) as well as the biflagellate kinetoplastid Bodo, by using SDS-PAGE containing gelatin as co-polymerized substrate and proteolytic inhibitors. Under the alkaline pH (9.0) conditions employed, all the flagellates presented at least one peptidase, with the exception of Crithidia acanthocephali and Phytomonas serpens, which did not display any detectable proteolytic enzyme activity. All the proteolytic activities were completely inhibited by 1,10-phenanthroline, a zinc-chelating agent, putatively identifying these activities as metallo-type peptidases. EDTA and EGTA, two other metallopeptidase inhibitors, E-64 (a cysteine peptidase inhibitor), pepstatin A (an aspartyl peptidase inhibitor) and PMSF (a serine peptidase inhibitor) did not interfere with the metallopeptidase activities detected in the studied trypanosomatids. Conversely, Bodo-derived peptidases were resistant to 1,10-phenanthroline and only partially inhibited by EDTA, showing a distinct inhibition profile. Together, our data demonstrated great heterogeneity of expression of metallopeptidases in a wide range of parasites belonging to the family Trypanosomatidae.  相似文献   

19.
Observations on freeze-fractured membranes of a Trypanosome   总被引:1,自引:0,他引:1  
Pure preparations of Trypanosoma brucei, free from plasma and cellular components were isolated from rat blood, and concentrated into loose pellets by low-speed centrifugation. Pellets were either processed for thin sectioning as a control for general morphology, or glycerol-treated after glutaraldehyde fixation for preparation of freeze-fracture replicas. Concentration of cells of 50,000–100,000/mm2 of sectioned or fractured surface facilitated identification of fracture faces of the cell body, invaginated flagellar pocket and flagellum. Particle distribution and A and B faces of these regions of the cell are described. A collar of B face particles occurs around the neck of the flagellar pocket, possibly associated with a junction controlling ingress of ingested materials to coated vesicles formed along the membrane defining the pocket. A and B faces of the flagellum and adjoining surface of the cell body have shown that the only intra-membrane specialization corresponding to the miniature ‘maculae adherentes’ described previously in thin sections is probably an uninterrupted series of small clusters (3–6) of 80 Å particles on the A face of the flagellar membrane. It is proposed that these arrays represent attachment points for strands linking the axoneme and paraxial rod to the flagellar surface, and are not directly concerned with the physical adhesion of the flagellum to the cell body surface—a linkage that appears to be established within the extracellular gap between these apposed surfaces of the cell. The potential use of freeze-etching in further study of the external antigens of the infective cell is discussed.  相似文献   

20.
Reactivity of different Trypanosoma cruzi developmental forms with purified Chagasic anti-α-galactosyl antibodies (anti-Gal) was studied using epimastigotes from axenic cultures, trypomastigotes and amastigotes from infected Vero cell cultures, and an immunogold labeling method as observed by electron microscopy. Epimastigotes were poorly labeled, whereas extracellular trypomastigotes and amastigotes bound heterogeneously to the antibody with many cells being intensely labeled at the cell surface, including the membrane lining the cell body, the flagellum and the flagellar pocket. Parasites with poor labeling at the cell surface generally had several gold particles within the cell, mostly in cytoplasmic vacuoles. The Golgi complex of trypomastigotes was strongly labeled. Intracellular parasites were labeled at the parasite cell surface or within vacuolar structures. The expression in T. cruzi -infected Vero cells of α-galactosyl antigenic structures acquired from the parasite was shown by moderate labeling with Chagasic anti-Gal of the membrane lining parasite-free outward cell projections. The reactivity with purified anti-Gal from healthy individuals at the same concentrations of Chagasic anti-Gal was poor, with gold particles appearing in the nucleus and cytoplasm but not at the cell surface. It paralleled the labeling with Bandeireae simplicifolia IB-4 lectin. The results provide a basis for autoimmune reactions involving anti-Gal from chronic Chagasic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号