首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms underlying Ca2+ effects on lipid peroxidation (LPO) induced in liposomes (from egg yolk lecithin) and ufasomes (from linolenic acid and methyl linolenate) with the aid of an O2-(.) -generating system (Fe2+ + ascorbate) were studied. It was shown that stimulation of LPO by low Ca2+ concentrations (10(-6)-10(-5)M) was due to its ability to release Fe2+ ions bound to negatively charged (phosphate or carboxylic) lipid groups (of lecithin or linolenic acid), thus increasing the concentration of catalytically active Fe2+. The inhibitory effect of high Ca2+ concentrations was caused by its interaction with superoxide anion radicals and was not observed in LPO systems independent of O2- generation (e.g., Fe2+ + cumol hydroperoxide).  相似文献   

2.
Mechanisms underlying Ca2+ effects on lipid peroxidation (LPO) induced in liposomes (from egg yolk lecithin) and UFsomes (from linolenic acid, methyl linolenate) with the aid of O2- -system (Fe2+ + ascorbate) were studied. It was shown that stimulation of lipid peroxidation by low Ca2+ concentrations (10(-6)-10(-5) M) was due to its ability to release Fe2+-ions bound to negatively charged (phosphate, carboxylic) lipid groups (of licethin, linolenic acid), thus increasing the concentration of catalytically active Fe2+. The inhibitory effect of high Ca2+ concentrations was caused by its interaction with superoxide anion-radicals and was not observed in LPO-systems, independent of O2- generation (e. g. Fe2+ + cumol hydroperoxide).  相似文献   

3.
Tocopherols (vitamin E) function as inhibitors of lipid peroxidation in biomembranes by donating a hydrogen atom to the chain propagating lipid radicals, thus giving rise to chromanoxyl radicals of the antioxidant. We have shown that alpha-tocopherol homologs differing in the lengths of their hydrocarbon side chains (alpha-Cn) manifest strikingly different antioxidant potencies in membranes. The antioxidant activity of tocopherol homologs during (Fe2+ + ascorbate)- or (Fe2+ + NADPH)-induced lipid peroxidation in rat liver microsomes increased in the order alpha-tocopherol (alpha-C16) less than alpha-C11 less than alpha-C6 less than alpha-C1. Chromanoxyl radicals generated from alpha-tocopherol and its more polar homologs by an enzymatic oxidation system (lipoxygenase + linolenic acid) can be recycled in rat liver microsomes by NAD-PH-dependent electron transport or by ascorbate. The efficiency of recycling increased in the same order: alpha-tocopherol (alpha-C16) less than alpha-C11 less than alpha-C6 less than alpha-C1. Thus the high efficiency of regeneration of short-chain homologs of vitamin E may account for their high antioxidant potency.  相似文献   

4.
Oxidation of ferrous iron during peroxidation of lipid substrates   总被引:3,自引:0,他引:3  
Oxidation of Fe2+ in solution was dependent upon medium composition and the presence of lipid. The complete oxidation of Fe2+ in 0.9% saline was markedly accelerated in the presence of phosphate or EDTA and the ferrous oxidation product formed was readily recoverable as Fe2+ by ascorbate reduction. In contrast, in the presence of either brain synaptosomal membranes, phospholipid liposomes, fatty acid micelles or H2O2, less than 50% of the Fe2+ oxidized during an incubation could be recovered as Fe2+ via reduction with ascorbate. In the presence of unsaturated lipid, oxidation of Fe2+ was associated with peroxidation of lipid, as assessed by the uptake of O2 and formation of thiobarbituric acid-reactive products during incubations. Although relatively little Fe2+ oxidation or lipid peroxidation occurred in saline with synaptosomes or linoleic acid micelles during an incubation with Fe2+ alone, significant Fe2+ oxidation and lipid peroxidation occurred in incubations containing a 1:1 ratio of Fe2+ and Fe3+. Extensive Fe2+ oxidation and lipid peroxidation also occurred with Fe2+ alone in saline incubations with either linolenic or arachidonic acid acid micelles or liposomes prepared from dilinoleoylphosphatidylcholine. While a 1:1 ratio of Fe2+ and Fe3+ enhanced thiobarbituric acid-reactive product formation in incubations containing linolenic or arachidonic micelles, it reduced the rate of O2 consumption as compared with Fe2+ alone. The results demonstrate that oxidation of Fe2+ in incubations containing lipid substrates is linked to and accelerated by peroxidation of those substrates. Furthermore, the results suggest that oxidation of Fe2+ in the presence of lipid or H2O2 creates forms of iron which differ from those formed during simple Fe2+ autoxidation.  相似文献   

5.
This study includes two parts. First, the Fe2+ autooxidation and chelation processes in the presence of the chelators ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine pentaacetic acid (DTPA) were studied by measuring UV light absorbance alterations. Competition for Fe3+ between chelators and water or phosphate buffer (PB) ions was confirmed. The addition of EDTA or DTPA to Fe3+ in water or PB only slowly turned the water/PB-Fe3+ complexes to EDTA-Fe3+ or DTPA-Fe3+ complexes. In the second part of this study, the initiation mechanisms of Tween 20 emulsified linoleic acid peroxidation under stimulation by chelator-Fe-O2 complexes were studied by measuring changes in UV light absorbance following diene conjugation. Fe3+ in the presence of EDTA or DTPA did not stimulate diene conjugation. Fe2+ (0.10 mM) and EDTA (0.11 mM) stimulated diene conjugation of the linoleic acid emulsion, but only after apparent Fe2+ autooxidation. Fe2+ and DTPA, as well as premixed DTPA-Fe2+ complex, resulted in very fast diene conjugation in a wide range of concentrations. A nonlinear, mainly square root relation between Fe2+ concentration and peroxidation rate was noted. Superoxide dismutase (SOD), catalase, and mannitol did not prevent the lipid peroxidation. H2O2 substantially decreased the DTPA-Fe2+ stimulated, otherwise rapid, diene conjugation but slightly enhanced the slower one stimulated by EDTA-Fe2+. Without ambient oxygen, Fenton reagents did not result in .H abstraction-related diene conjugation. The findings suggest that .OH resulting from Fenton reagents may not be the main cause for the initiation of peroxidation in this model system. Furthermore, a study with different combinations of Fe2+ and Fe3+ did not support the Fe2+/Fe3+ (1:1) optimum ratio hypothesis. We therefore conclude that perferryl ions or chelator-Fe-O2 complexes may be responsible for the first-chain initiation of lipid peroxidation, at least in this model system.  相似文献   

6.
Eu3+-tetracycline complex (EuT) increased the chemiluminescence (CL) intensity of linolenic acid micells (UFA-somes) oxidized with lipoxygenase and CL of the lecithin liposomes peroxidized with Fe2+ ions by 3 orders of magnitude. In the systems producing oxygen radicals (xanthine + xanthine oxidase and Fenton's reagent) EuT was ineffective. Luminol increased CL intensity up to 4 orders of magnitude in Fenton's reagent and by 2 orders of magnitude in xanthine oxidase reaction. The sensitization of CL in Fe2+-induced lipid peroxidation (LPO) of liposomes was by a factor 40, while in lipoxygenase reaction very low sensitization was observed. By means of cut-off light filter OS-12 (Soviet) having short wave-length transmittance limit at 560 nm it was possible to measure separately in the same sample the luminol-sensitized CL (maximal emission near 480 nm) and EuT-sensitized CL (maximum at 620 nm); these two CL components reflect, correspondingly, the production rate of oxygen- and lipid-free radicals. Mannitol, the OH radical scavenger, inhibited luminol-dependent component of CL in peroxidized liposomes and did not inhibited EuT sensitized CL in the same system. Apparently, hydroxyl radicals are produced in LPO reactions and responsible for the effect of CL sensitization by luminol, but are not involved in the chain LPO process.  相似文献   

7.
The azole antifungal drug ketoconazole was found to inhibit Fe(III)-ascorbate dependent lipid peroxidation using either rat liver microsomes or ox-brain phospholipid liposomes as the substrate. It also inhibited microsomal peroxidation induced by the Fe(III)-ADP/NADPH system. The related azoles, miconazole and clotrimazole, were much weaker inhibitors than ketoconazole. Ketoconazole was approximately equipotent with the triphenylethylene anticancer drug tamoxifen in the microsomal system and was almost as effective as 4-hydroxytamoxifen in the liposomal system. Ketoconazole introduced into phospholipid liposomes during their preparation inhibited Fe(III)-ascorbate induced lipid peroxidation to a greater extent than similarly introduced cholesterol, ergosterol or tamoxifen. Miconazole and clotrimazole were again poor inhibitors of lipid peroxidation in this system. These antioxidant effects of ketoconazole may be due to membrane stabilization in the systems used. The implications of our findings for the clinical applications of these drugs are discussed.  相似文献   

8.
Site-specific induction of lipid peroxidation by iron in charged micelles   总被引:1,自引:0,他引:1  
Generation of hydroxyl radicals by the Fenton reaction resulted in lipid peroxidation of linoleic acid (LA) (H2O2-Fe2+-induced lipid peroxidation) in positively charged tetradecyltrimethylammonium bromide (TTAB) micelles, but not in negatively charged sodium dodecyl sulfate (SDS) micelles. However, more OH radicals formed via the Fenton reaction were trapped by N-t-butyl-alpha-phenylnitrone (PBN) in SDS micelles than in TTAB micelles. When detergent-dispersed LA was contaminated with linoleic acid hydroperoxide (LOOH), lipid peroxidation was catalyzed by Fe2+ via reductive cleavage of LOOH (LOOH-Fe2+-induced lipid peroxidation), and Fe2+ was oxidized simultaneously in SDS micelles, even when H2O2 was not present. In contrast, LOOH-Fe2+-induced lipid peroxidation and simultaneous oxidation of Fe2+ were not observed in TTAB micelles. An ESR spectrum presumed to be due to an alkoxy radical trapped by PBN was also detected in SDS micelles, but not in TTAB micelles in the LOOH-Fe2+-induced lipid peroxidation system. The results are discussed in the light of the localization of iron, the unsaturated bonding moiety of LA, the OOH-group of LOOH, and the trapping site of PBN in different charged micelles.  相似文献   

9.
When rat liver microsomes were incubated with NADPH, the major products were hydroperoxides which increased with time indicating that endogenous iron content is able to promote lipid peroxidation. The addition of either 5 microM Fe2+ or Fe3+ ions strongly enhanced the hydroperoxide formation rate. However, due to the hydroperoxide breakdown, hydroperoxide concentration decreased with time in this case. Higher ferrous or ferric iron concentration did not change the situation much, in that both hydroperoxide breakdown and formation were similar to those when NADPH only was present in the incubation medium. After lipid peroxidation, analysis of fatty acids indicated that the highest amount of peroxidized PUFA occurred in the presence of 5 microM of either Fe2+ or Fe3+. This analysis also showed that after 8 min incubation with low iron concentration, PUFA depletion was about 77% of that observed after 20 min, whereas without any iron addition or in the presence of 30 microM of either Fe3+, PUFA decrease was only about 37% of that observed after 20 min. As far as the optimum Fe2+/Fe3+ ratio required to promote the initiation of microsomal lipid peroxidation in rat liver is concerned, the highest hydroperoxide formation was observed with a ratio ranging from 0.5 to 2. These results indicate that microsomal lipid peroxidation induced by endogenous iron is speeded up by the addition of low concentrations of either Fe2+ or Fe3+ ions, probably because free radicals generated by hydroperoxide breakdown catalyze the propagation process. In experimental conditions unfavourable to hydroperoxide breakdown the principal process is that of the initiation of lipid peroxidation.  相似文献   

10.
Intense lipid peroxidation of brain synaptosomes initiated with Fenton's reagent (H2O2 + Fe2+) began instantly upon addition of Fe2+ and preceded detectable OH. formation. Although mannitol or Tris partially blocked peroxidation, concentrations required were 10(3)-fold in excess of OH. actually formed, and inhibition by Tris was pH dependent. Lipid peroxidation also was initiated by either Fe2+ or Fe3+ alone, although significant lag phases (minutes) and slowed reaction rates were observed. Lag phases were dramatically reduced or nearly eliminated, and reaction rates were increased by a combination of Fe3+ and Fe2+. In this instance, lipid peroxidation initiated by optimal concentrations of H2O2 and Fe2+ could be mimicked or even surpassed by providing optimal ratios of Fe3+ to Fe2+. Peroxidation observed with Fe3+ alone was dependent upon trace amounts of contaminating Fe2+ in Fe3+ preparations. Optimal ratios of Fe3+:Fe2+ for the rapid initiation of lipid peroxidation were on order of 1:1 to 7:1. No OH. formation could be detected with this system. Although low concentrations of H2O2 or ascorbate increased lipid peroxidation by Fe2+ or Fe3+, respectively, high concentrations of H2O2 or ascorbate (in excess of iron) inhibited lipid peroxidation due to oxidative or reductive maintenance of iron exclusively in Fe2+ or Fe3+ form. Stimulation of lipid peroxidation by low concentrations of H2O2 or ascorbate was due to the oxidative or reductive creation of Fe3+:Fe2+ ratios. The data suggest that the absolute ratio of Fe3+ to Fe2+ was the primary determining factor for the initiation of lipid peroxidation reactions.  相似文献   

11.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

12.
The initiation of lipid peroxidation by Fe2+ and H2O2 (Fenton's reagent) is often proposed to be mediated by the highly reactive hydroxyl radical. Using Fe2+, H2O2, and phospholipid liposomes as a model system, we have found that lipid peroxidation, as assessed by malondialdehyde formation, is not initiated by the hydroxyl radical, but rather requires Fe3+ and Fe2+. EPR spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide and the bleaching of para-nitrosodimethylaniline confirmed the generation of the hydroxyl radical in this system. Accordingly, catalase and the hydroxyl radical scavengers mannitol and benzoate efficiently inhibited the generation and the detection of hydroxyl radical. However, catalase, mannitol, and benzoate could either stimulate or inhibit lipid peroxidation. These unusual effects were found to be consistent with their ability to modulate the extent of Fe2+ oxidation by H2O2 and demonstrated that lipid peroxidation depends on the Fe3+:Fe2+ ratio, maximal initial rates occurring at 1:1. These studies suggest that the initiation of liposomal peroxidation by Fe2+ and H2O2 is mediated by an oxidant which requires both Fe3+ and Fe2+ and that the rate of the reaction is determined by the absolute Fe3+:Fe2+ ratio.  相似文献   

13.
Caesium and rubidium counter-ions increase peroxidation in irradiated micelles of linoleic (18 : 2) and linolenic (18 : 3) acids. The effect is specific to Cs+ and Rb+ in the alkali metal series. The effect is independent of the salts used (Cl-, NO3-, ClO4-) and, therefore, independent of the chaotropic nature, and reactivity with hydroxyl radicals of Cl-, NO3- and ClO4-. The promotion of peroxidation by Cs+ and Rb+ is interpreted in terms of their effect on fatty acid micelle structure. The dependence of radiation peroxidation on lipid structure in the micelles may be significant for studies of peroxidation in highly structured cell membranes.  相似文献   

14.
alpha-Tocopherol inhibited H2O2-Fe2+-induced lipid peroxidation of linoleic acid (LA) by scavenging OH radicals in tetradecyltrimethylammonium bromide (TTAB) micelles. The inhibiting ability of alpha-tocopherol was much greater than that of OH-radical scavengers mannitol and t-butanol. In contrast, alpha-tocopherol enhanced linoleic acid hydroperoxide (LOOH)-Fe2+-induced lipid peroxidation through regeneration of Fe2+ in sodium dodecyl sulfate (SDS) micelles containing LA. alpha-Tocopherol was oxidized by Fenton's reagent (FeSO4 + H2O2) at a higher rate in SDS micelles than in TTAB micelles. The likely oxidants were OH radicals in the former and Fe3+ in the latter. Both reagents formed in the Fenton reaction. Ferrous ion catalyzed in a dose-dependent manner the decomposition of LOOH and conjugated diene compounds in SDS but not in TTAB micelles. alpha-Tocopherol and Fe3+ individually had no effect on the decomposition of LOOH, but together were quite effective. The rate of the decomposition was a function of the concentration of alpha-tocopherol. The mechanism of "site-specific" antioxidant action of alpha-tocopherol in charged micelles is discussed.  相似文献   

15.
The antioxidant properties oí Acantholippia deserticola, a herb used in traditional northern Chilean medicine was studied using free radical-generating systems. The 50% aqueous-ethanol extract oí Acantholippia deserticola protected against non-enzymatic lipid peroxidation in microsomal membranes of rat, induced by an Fe++-ascorbate system and measured spectrophotometrically by the TBARS test, and had strong free radical scavenging capacities on stable ABTS and DPPH radicals. The results shows that the IC50 value of the 50% aqueous-ethanolic extract of A.deserticola is 18 +/- 0.5 microg/mL in DPPH radical-scavenging, 15 +/- 0.8 microg/mL in lipid peroxidation , Total Antioxidant Activity (TAA) is 0.95 mM of Trolox per mg/mL of extract. The total phenolics content of extract is 725 +/- 12 mg of gallic acid equivalent per g of dried extract. The results indicate that the 50% aqueous-ethanol extract of Acantholippia deserticola clearly has antioxidant properties.  相似文献   

16.
Factors affecting the free radical scavenging behavior of chitosan sulfate   总被引:1,自引:0,他引:1  
Scavenging activity of hydroxyethyl chitosan sulfate (HCS) against 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl and carbon-centered radical species were studied using electron spin resonance (ESR) spectroscopy. In addition, its antioxidant activity to retard lipid peroxidation was also evaluated in a linoleic acid model system. HCS could scavenge DPPH (33.78%, 2.5 mg/mL) and carbon-centered radicals (67.74%, 0.25 mg/mL) effectively. However, chitosan sulfate did not exhibit any scavenging activity against hydroxyl radicals, but increased its generation. This was different from the published literature and was presumed due to the loss of chelating ability on Fe2+. This assumption could further confirm from the results obtained for Fe2+-ferrozine method that upon sulfation chitooligosaccharides lost its chelation properties. Therefore, HCS can be identified as antioxidant that effectively scavenges carbon centered radicals to retard lipid peroxidation.  相似文献   

17.
Aldehydic lipid peroxidation products can be detected after transformation to pentafluorobenzyloxime derivatives by GC-MS screening using characteristic ion traces. Thus the rather unstable unsaturated hydroxyaldehyde, 6-hydroxy-2,4-undecadienal, was identified as autoxidation product of linoleic acid. Its structure was unambiguously confirmed by comparison with an authentic sample. After Fe2+ -ascorbate induced lipid peroxidation of oleic acid several 4-hydroxy-2-alkenals and 4-hydroxyalkanals were detected. These represent previously unknown secondary oxidation products of lipid peroxidation of oleic acid. Nevertheless oleic acid proved about 1000 times more stable against peroxidation than linoleic or higher unsaturated acids.  相似文献   

18.
Ferric nitrilotriacetate, which causes in vivo organ injury, induced lipid peroxidation and cell death in Ehrlich ascites tumor cells in vitro. The process was inhibited by butylated hydroxyanisole and enhanced by vitamin C and linolenic acid, indicating a close relationship between cytotoxicity and the lipid peroxidizing ability of Fe3+ NTA. The cytotoxicity was suppressed by glucose and a temperature below 20 degrees C. Lipid peroxidation of Fe3+ NTA-treated cells was greater at 0 degree C than at 37 degrees C, contrary to results with Fe3+ NTA-treated plasma membranes of Ehrlich ascites tumor cell. These results suggested that metabolism and membrane fluidity are important factors in the expression of the Fe3+ NTA-induced cytotoxicity. H2O2 showed a lower cytotoxicity than did Fe3+ NTA but a greater lipid peroxidizing ability. H2O2 appeared to damage the cells less, and was quenched rapidly by cellular metabolism unlike Fe3+ NTA. In transferrin-free medium, Ehrlich ascites tumor cell readily incorporated Fe3+ NTA, and iron uptake was greater than NTA-uptake in Fe3+ NTA-treated cells, suggesting that Ehrlich ascites tumor cell incorporated iron from Fe3+NTA and metabolized it into an inert form such as ferritin.  相似文献   

19.
The stimulatory effect of ferrous salts on the peroxidation of phospholipids can be enhanced by EDTA when the concentration of Fe2+ in the reaction is greater than that of EDTA. Hydroxyl-radical scavengers do not inhibit peroxidation until the concentrations of Fe2+ and EDTA in the reaction are equal. Lipid peroxidation is then substantially initiated by hydroxyl radicals derived from a Fenton-type reaction requiring hydrogen peroxide. Superoxide radicals appear to play some role in the formation of initiating species.  相似文献   

20.
The role of iron in the initiation of lipid peroxidation   总被引:5,自引:0,他引:5  
Iron is required for the initiation of lipid peroxidation. Evidence is presented that lipid peroxidation requires both Fe3+ and Fe2+, perhaps with oxygen to form a Fe3+-dioxygen-Fe2+ complex. Other mechanisms of initiation, mostly involving the iron-catalyzed formation of hydroxyl radical, are described and discussed from both theoretical and experimental view points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号