首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This group of papers derives from a session, organized heldto recognize the fundamental contributions made by Gustav-AdolfPaffenhöfer to the field of zooplankton behavioural ecology.The session was organized by his colleagues, Maria Grazia Mazzocchi,Marie Bundy and Done Deibel, at the American Society of Limnologyand Oceanography Aquatic Sciences meeting in Salt Lake City,20–25 February  相似文献   

2.
Parris MJ  Beaudoin JG 《Oecologia》2004,140(4):626-632
Despite ecologists increasingly recognizing pathogens as playing significant roles in community dynamics, few experimental studies have quantified patterns of disease impacts on natural systems. Amphibians are experiencing population declines, and a fungal pathogen (Batrachochytrium dendrobatidis; Chytridiomycota) is a suspected causal agent in many declines. We studied the effects of a pathogenic fungus on community interactions between the gray treefrog, Hyla chrysoscelis, and eastern newts, Notophthalmus viridescens. Recent studies have characterized chytridiomycosis as an emerging infectious disease, whose suspected rapid range expansion and widespread occurrence pose a significant risk for amphibian populations worldwide. We reared larvae in outdoor polyethylene experimental tanks and tested the effects of initial larval density, predator presence, and fungal exposure on Hyla recruitment and predator-prey interactions between Hyla and Notophthalmus. Newts reduced treefrog survival, and high intraspecific density decreased metamorphic body mass independent of B. dendrobatidis. The presence of fungi reduced treefrog body mass at metamorphosis by 34%, but had no significant main effect on survival or larval period length. B. dendrobatidis differentially affected larval development in the presence of predators; Hyla developed slower when reared with the pathogen, but only when newts were present. This significant predator-by-pathogen interaction suggests that the impact of chytridiomycosis on larval amphibians may be exacerbated in complex communities. Our data suggest that B. dendrobatidis effects on host life history may be complex and indirect. Direct measurements of the community-level effects of pathogens offer an important opportunity to understand a significant threat to global biodiversity—declining amphibian populations.  相似文献   

3.
Viral influence on aquatic bacterial communities   总被引:6,自引:0,他引:6  
Bacterial viruses, or bacteriophages, have numerous roles in marine systems. Although they are now considered important agents of mortality of bacteria, a second possible role of regulating bacterial community composition is less well known. The effect on community composition derives from the presumed species-specificity and density-dependence of infection. Although models have described the "kill the winner" hypothesis of such control, there are few observational or experimental demonstrations of this effect in complex natural communities. We report here on some experiments that demonstrate that viruses can influence community composition in natural marine communities. Although the effect is subtle over the time frame suitable for field experiments (days), the cumulative effect over months or years would be substantial. Other virus roles, such as in genetic exchange or microbial evolution, have the potential to be extremely important, but we know very little about them.  相似文献   

4.
Apparent competition is a form of indirect interaction among species that can potentially structure biological communities. In insect communities, parasitoid-mediated apparent competition has been proposed as a particularly important structuring force. We argue that short-term apparent competition may be less important in structuring insect communities in tropical regions, compared with temperate regions. This prediction arises because, compared with temperate insects, tropical insects that share natural enemies are more likely to be isolated in both space and time.  相似文献   

5.
Availability of macrophyte habitat is recognized as an important driver of aquatic insect communities in peatland drainage ditches; however, eutrophication can lead to the decline of submerged vegetation. While emergent vegetation is able to persist in eutrophicated ditches, vegetation removal, carried out during ditch maintenance, can reduce the availability of this habitat. In this study, we applied the landscape filtering approach to determine whether the absence of emergent vegetation is a habitat filter which structures aquatic insect communities in peatland drainage ditches under different trophic conditions. To this end, a field study was carried out in one mesotrophic (Naardermeer) and one eutrophic (Wormer and Jisperveld) peatland in the province of North Holland, The Netherlands. We assigned life history strategies to insect species and applied linear mixed models and redundancy analyses to taxonomic and functional aquatic insect community data. Our results indicate that while differences between peatlands primarily determine the species pool within each wetland, emergent vegetation acted as a secondary filter by structuring functional community composition within ditches. The eutrophic peatland was dominated by insects adapted to abiotic extremes, while species with good dispersal abilities were strongly related to emergent vegetation cover. This study demonstrates the applicability of life history strategies to provide insight into the filtering of species due to availability of emergent macrophyte habitat. To ensure greater diversity of insect communities in ditch habitats, it is recommended that some vegetation be spared during maintenance to leave patches from which insect recolonization can occur.  相似文献   

6.
Barriers to the recovery of aquatic insect communities in urban streams   总被引:1,自引:0,他引:1  
1. Worldwide, increasing numbers of stream restoration projects are being initiated to rehabilitate waterways modified by urbanisation. However, many of these projects have limited success in restoring stream communities. Prompted by this, we investigated previously unrecognised barriers to aquatic insect colonisation in urban streams. 2. To investigate whether the availability of suitable substrata for oviposition limited the longitudinal distribution of caddisflies, large boulders were added to the upstream reaches of one stream. Prior to the addition, more egg masses were observed downstream and this longitudinal pattern persisted subsequently. 3. Malaise trapping revealed that adult caddisfly diversity and abundance was greater downstream than upstream. Furthermore, in a previous study the authors found larval caddisflies reflected the longitudinal distribution of adults. 4. The only obvious potential obstructions between reaches were roads beneath which the stream flowed through culverted crossings. Malaise trapping was used to examine the effect of road culverts and bridges on caddisfly dispersal. Numbers of caddisflies caught declined upstream and about 2.5 × more individuals were taken in traps immediately below than above five culverts. 4. Bridges, which had a more open structure than culverts, had no significant effect on the size of catches made above and below them. 5. Road culverts could act as partial barriers to upstream flight, with consequences for larval recruitment in urban streams. We recommend that urban planners and designers of restoration projects consider possible synergistic effects of poor oviposition habitat and barriers to aquatic insect dispersal, which may be critical for the colonisation of urban headwater streams and for the maintenance of stream insect populations.  相似文献   

7.
Summary The general pattern of the data in this study shows that a riffle zone carries more species and, usually, more organisms/m2 than a slower current zone. The slower current zone, however, is still apparently able to support a larger number of organisms and species than a pool of standing water. In the West Fork of the Oak Creek system the dominant insects controlling diversity are the Trichoptera, particularly one species of Helicopsyche. Diversity in the fast current zone is high in the summer, and low during other seasons. Diversity in the slow current zone is highest in spring, but is also fairly high in summer. This reflects to a large extent the seasonal fluctuations in abundance of the dominant Trichopterans in the two habitats.  相似文献   

8.
Environmental constraints in aquatic habitats have become topics of concern to both the scientific community and the public at large. In particular, coastal and freshwater habitats are subject to dramatic variability in various environmental factors, as a result of both natural and anthropogenic processes. The protection and sustainable management of all aquatic habitats requires greater understanding of how environmental constraints influence aquatic organisms. Locomotion and predator-prey interactions are intimately linked and fundamental to the survival of mobile aquatic organisms. This paper summarizes the main points from the review and research articles which comprise the theme issue 'Environmental constraints upon locomotion and predator-prey interactions in aquatic organisms'. The articles explore how natural and anthropogenic factors can constrain these two fundamental activities in a diverse range of organisms from phytoplankton to marine mammals. Some major environmental constraints derive from the intrinsic properties of the fluid and are mechanical in nature, such as viscosity and flow regime. Other constraints derive from direct effects of factors, such as temperature, oxygen content of the water or turbidity, upon the mechanisms underlying the performance of locomotion and predator-prey interactions. The effect of these factors on performance at the tissue and organ level is reflected in constraints upon performance of the whole organism. All these constraints can influence behaviour. Ultimately, they can have an impact on ecological performance. One issue that requires particular attention is how factors such as temperature and oxygen can exert different constraints on the physiology and behaviour of different taxa and the ecological implications of this. Given the multiplicity of constraints, the complexity of their interactions, and the variety of biological levels at which they can act, there is a clear need for integration between the fields of physiology, biomechanics, behaviour, ecology, biological modelling and evolution in both laboratory and field studies. For studies on animals in their natural environment, further technological advances are required to allow investigation of how the prevailing physico-chemical conditions influence basic physiological processes and behaviour.  相似文献   

9.
In this study we present the comparative molecular analysis of bacterial communities of the aquatic plant Lemna minor from a contaminated site (RCP) and from a laboratory culture (EPA), as well as each of these with the addition of cadmium. Plants were identified as L. minor by analysis of the rpl16 chloroplast region. Comparative bacterial community studies were based on the analyses of 16S rRNA clone libraries, each containing about 100 clones from the root surfaces of plants. Bacterial communities were compared at three phylogenetic levels of resolution. At the level of bacterial divisions, differences in diversity index scores between treatments, with and without cadmium within the same plant type (EPA or RCP), were small, indicating that cadmium had little effect. When we compared genera within the most dominant group, the beta-proteobacteria, differences between unamended and cadmium-amended libraries were much larger. Bacterial diversity increased upon cadmium addition for both EPA and RCP libraries. Analyses of diversity at the phylotype level showed parallel shifts to more even communities upon cadmium addition; that is, percentage changes in diversity indices due to cadmium addition were the same for either plant type, indicating that contamination history might be independent of disturbance-induced diversity shifts. At finer phylogenetic levels of resolution, the effects of cadmium addition on bacterial communities were very noticeable. This study is a first step in understanding the role of aquatic plant-associated microbial communities in phytoremediation of heavy metals.  相似文献   

10.
The objective of this study was to evaluate the influence of the nutrient transfer system between anadromous salmon and aquatic insect communities across multiple, natural stream systems. Between 2000 and 2002, we sampled seven streams in southeast Alaska, seasonally. Of the seven study streams, four received large annual salmon runs (high-run streams), and three were no-run streams. All the streams selected had a natural waterfall barrier to salmon, providing an upstream control reach for each study stream. Insect density, biomass, richness, diversity and functional feeding groups were analyzed before, during and after the fall salmon run in each stream section (i.e. above and below the barrier) of the seven study streams between 2001 and 2002. Results showed that diversity and richness were similar across stream sections and run size within each period, except for during the run when both were significantly lower in downstream sections of high-run streams. Functional feeding group patterns showed higher abundance and biomass of collector–gatherers and shredders during the post spawning, carcass decomposition period. High-run streams had upstream sections with greater abundance and biomass of mayflies (dominated by Baetidae, Heptageniidae and Ephemerellidae) during the run, and downstream sections with greater abundance and biomass of dipterans (dominated by Chironomidae). This study suggests that the often published positive relationship between MDN and stream insect abundance and biomass may only exist for certain taxa, primarily chironomid midges.  相似文献   

11.
We examine a set of n-species predator-prey models which incorporate functional responses of the predators to their prey and non-linear intraspecific interactions. We review the limitations of a linear analysis around equilibrium states and provide an extension of the Routh-Hurwitz criteria to the non-linear regime by using Birkhoff's normal forms of differential equations. Qualitative properties like the orbit structure around isolated singularities become clear in this method. It is possible to obtain the radius of the torus and the renormalized frequencies when the eigenvalues of the community matrix have small positive real parts, and to classify different topological structures near bifurcation values of a convenient set of control parameters. Examples of two, three, and four species are analyzed in the context of normal forms.We conclude with some suggestions concerning the coupling of a small subsystem to a large community, and the relations between the graphical method of isoclines and normal forms. This correspondence indicates a road to generalize the study of many-dimensional systems when the intuition provided by the graphical method fails.  相似文献   

12.
The well-known Lotka-Volterra differential equations are modified in such way that the predators are supposed to be able to consume only a limited amount of preys in a unit of time. This saturation causes the appearance of nonperiodic solutions while the periodic ones are partly preserved. The paths in the phase plane which correspond to the nonperiodic solutions are expanding spirals of two different shapes. For a particular system of equations, all of the spirals either rotate for ever around the equilibrium point or straighten up at a certain point and head to infinity. The latter alternative occurs if the voracity of the predators is not too great. The biological significance of this result is in the possibility of a simultaneous progressive development of both populations.  相似文献   

13.
  1. Drought affects many agriculturally important areas, hampering the cultivation of water intensive crops such as tomatoes.
  2. Unlike processing tomatoes, deficit irrigation of fresh market tomatoes is not currently practiced. Deficit irrigation could have negative trade‐offs for yield and pest populations by changing plant nutritional values and the microenvironment.
  3. The present study compared crop response and insect populations at two field locations: an on‐farm trial with 0%, 15% and 30% water deficit treatments, and a research station trial with 0%, 10%, 20% and 30% water deficit treatments.
  4. At the on‐farm trial, water deficits of 30% affected fruit yield, leaf relative water content (RWC) and leaf δ13C, whereas, in the research station trial, water deficits only affected leaf RWC. Treatments did not change the abundance of any insect groups.
  5. Sap‐feeding insects such as silverleaf whitefly (Bemisia tabaci) increased with plant traits indicating hydration such as canopy temperature depression (CTD) and RWC. Furthermore, CTD influenced the composition of insect communities.
  6. Sap‐feeding insect abundance may vary with traits indicating hydration because of turgor pressure required for feeding, as well as a more suitable microenvironment.
  相似文献   

14.
We know little about how temporally variable predation risk influences prey behavior. The risk allocation hypothesis predicts that prey facing more frequent risk should show weak anti-predator responses, and should be particularly active foragers during rare periods of safety, compared to prey facing infrequent risk. Several studies offer support for the risk allocation hypothesis, but how these responses might propagate through the larger ecological community remains largely unknown. We experimentally investigated the relative strength of trait- and density-mediated indirect effects of a predator on its prey’s resource across predation treatments that varied the lethality (caged or free-swimming predators) and temporal variability (always, often, or sometimes present) of predation. We performed this experiment in pond mesocosms using a giant water bug predator (Belostoma lutarium), an herbivorous pond snail (Physa gyrina), and algae as the basal resource. Snails greatly reduced the abundance of their algal resource when in the absence of predation. Lethal predation at low and medium intensities had significant positive indirect effects on the abundance of algae, mostly by reducing snail density. Snails responded behaviorally to high levels of deadly predation by foraging more and hiding less than in other situations, as predicted by the risk allocation hypothesis, and thus ameliorated the density-mediated indirect effects of predators on algae. Behavioral responses to caged predators, and the subsequent trait-mediated indirect effects, were negligible regardless of predation intensity. Our previous work has demonstrated that trait-mediated indirect effects are weak when resources are abundant, as they were in this experiment. This work demonstrates that temporal variation in predation intensity plays a key role in determining the relative strength of TMIIs and DMIIs in an aquatic food chain.  相似文献   

15.
1. Flow variation can drive major abiotic changes in stream environments between seasons. Theoretically, disparate biotic communities could be maintained during different seasons at a single site if suitable refuges and colonist sources were available. Using isolated montane desert streams in south‐east Arizona as a model system, we hypothesised that two disparate aquatic insect faunas (montane temperate and neotropical) could be maintained at the same sites through strong seasonal variation in abiotic conditions. 2. We collected aquatic insects representing 59 families from seven streams during high‐flow (March–April) and low‐flow (June) sampling periods across two years. We assessed changes in aquatic insect community and functional feeding group composition by habitat (riffle, pool) and season (high flow, low flow). 3. Within sites, wetted stream area decreased by an average of 97% between high‐flow (predominately riffles) and low‐flow (predominately pools) seasons. Community composition likewise showed strong seasonal patterns; the montane temperate fauna was strongly associated with the high‐flow season while neotropical hemipterans and coleopterans were associated with the low‐flow season. Increased water temperature was significantly associated with this shift from temperate to neotropical assemblages. 4. Functional feeding group composition shifted dramatically by season. The proportion of predators increased from 24.5% (high flow) to 75.2% (low flow) while collector–filterers and shredders declined from 38.4% (high flow) to 1.7% (low flow). 5. We suggest that habitat ‘time‐sharing’ by disparate communities is facilitated via strong seasonal variation in temperature and flow and the presence of high elevation refuges or diapause stages for temperate montane taxa to survive the dry season.  相似文献   

16.
Extraction of filamentous algae from river pools is highly effective for the control of Anophelespseudopunctipennis in southern Mexico. We determined the magnitude of changes to the aquatic insect community following single annual perturbations performed over two years. In 2001, algae were manually removed from all the pools in a 3 km long section of the River Coatán, Mexico, while an adjacent section was left as an untreated control. In 2002, the treatments of both zones were switched and algal extraction was repeated. The abundance of An. pseudopunctipennis larvae + pupae was dramatically reduced by this treatment and remained depressed for two to three months. A total of 11,922 aquatic insects from ten orders, 40 families, and 95 genera were collected in monthly samples taken over five months of each year. Algal extraction did not reduce the overall abundance of aquatic insects in river pools, but a greater abundance and a greater richness of taxa were observed in 2002 compared to the previous year. This was associated with reduced precipitation and river discharge in 2002 compared to 2001. Shannon diversity index values were significantly depressed following algal extraction for a period of three months, in both years, before returning to values similar to those of the control zone. However, differences between years were greater than differences between treatments within a particular year. When insects were classified by functional feeding group (FFG), no significant differences were detected in FFG densities between extraction and control zones over time in either year of the study. Similarly, percent model affinity index values were classified as "not impacted" by the extraction process. Discriminant function analysis identified two orders of insects (Diptera and Odonata), water temperature, dissolved oxygen and conductivity, and river volume (depth, width, and discharge) as being of significant value in defining control and treatment groups in both years. We conclude that habitat manipulation represents an effective and environmentally benign strategy for control of An. pseduopunctipennis. Variation in precipitation and river discharge between years was much more important in determining aquatic insect community composition than variation generated by the filamentous algal extraction treatment.  相似文献   

17.
The effects of refuges on predator-prey interactions: a reconsideration   总被引:3,自引:0,他引:3  
Prey refuges are widely believed to prevent prey extinction and damp predator-prey oscillations. A review of the empirical evidence suggests that refuges are indeed capable of playing the former role. But the conditions under which they do so are not understood, nor is there any solid evidence for an effect on population fluctuations. The intuitive view that refuges act to stabilize equilibria and damp predator-prey oscillations is based in several theoretical studies of extremely simple models. Using a more realistic model, I show that several kinds of refuges can exert a locally destabilizing effect and create stable, large-amplitude oscillations which would damp out if no refuge was present. This finding contrasts sharply with the usual view. I argue that current evidence is tol weak, and the range of theoretically possible effects is too broad, to justify any simple characterization of refuge effects in nature. Manipulative empirical studies are an important first step toward correcting this situation, and I discuss some important factors to consider in their design.  相似文献   

18.
19.
Global stability of predator-prey interactions   总被引:4,自引:0,他引:4  
Summary A Lyapunov function is given that extends functions used by Volterra, Goh, and Hsu to a wide class of predator-prey models, including Leslie type models, and a biological interpretation of this function is given. It yields a simple stability criterion, which is used to examine the effect on stability of intraspecific competition among both prey and predators, of a refuge for the prey, and of Holling type II and type III functional responses. Although local stability analysis of these specific models has been done previously, the Lyapunov function facilitates study of global stability and domains of attraction and provides a unified theory which depends on the general nature of the interactions and not on the specific functions used to model them.  相似文献   

20.
The geographic mosaic theory of coevolution predicts 1) spatial variation in predatory structures as well as prey defensive traits, and 2) trait matching in some areas and trait mismatching in others mediated by gene flow. We examined gene flow and documented spatial variation in crushing resistance in the freshwater snails Mexipyrgus churinceanus, Mexithauma quadripaludium, Nymphophilus minckleyi, and its relationship to the relative frequency of the crushing morphotype in the trophically polymorphic fish Herichthys minckleyi. Crushing resistance and the frequency of the crushing morphotype did show spatial variation among 11 naturally replicated communities in the Cuatro Ciénegas valley in Mexico where these species are all endemic. The variation in crushing resistance among populations was not explained by geographic proximity or by genetic similarity in any species. We detected clear phylogeographic patterns and limited gene flow for the snails but not for the fish. Gene flow among snail populations in Cuatro Ciénegas could explain the mosaic of local divergence in shell strength and be preventing the fixation of the crushing morphotype in Herichthys minckleyi. Finally, consistent with trait matching across the mosaic, the frequency of the fish morphotype was negatively correlated with shell crushing resistance likely reflecting the relative disadvantage of the crushing morphotype in communities where the snails exhibit relatively high crushing resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号