首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The soilborne fungal pathogen Fusarium oxysporum causes vascular wilt and root rot diseases in many plant species. We investigated the role of cyclic AMP-dependent protein kinase A of F. oxysporum (FoCPKA) in growth, morphology, and root attachment, penetration, and pathogenesis in Arabidopsis thaliana. Affinity of spore attachment to root surfaces of A. thaliana, observed microscopically and measured by atomic force microscopy, was reduced by a loss-of-function mutation in the gene encoding the catalytic subunit of FoCPKA. The resulting mutants also failed to penetrate into the vascular system of A. thaliana roots and lost virulence. Even when the mutants managed to enter the vascular system via physically wounded roots, the degree of vascular colonization was significantly lower than that of the corresponding wild-type strain O-685 and no noticeable disease symptoms were observed. The mutants also had reduced vegetative growth and spore production, and their hyphal growth patterns were distinct from those of O-685. Coinoculation of O-685 with an focpkA mutant or a strain nonpathogenic to A. thaliana significantly reduced disease severity and the degree of root colonization by O-685. Several experimental tools useful for studying mechanisms of fungal root pathogenesis are also introduced.  相似文献   

2.
Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including the model plant Arabidopsis thaliana. Currently, very little is known about the molecular or physiological processes that are activated in the host during infection and the roles these processes play in resistance and susceptibility to F. oxysporum. In this study, we analyzed global gene expression profiles of F. oxysporum-infected Arabidopsis plants. Genes involved in jasmonate biosynthesis as well as jasmonate-dependent defense were coordinately induced by F. oxysporum. Similarly, tryptophan pathway genes, including those involved in both indole-glucosinolate and auxin biosynthesis, were upregulated in both the leaves and the roots of inoculated plants. Analysis of plants expressing the DR5:GUS construct suggested that root auxin homeostasis was altered during F. oxysporum infection. However, Arabidopsis mutants with altered auxin and tryptophan-derived metabolites such as indole-glucosinolates and camalexin did not show an altered resistance to this pathogen. In contrast, several auxin-signaling mutants were more resistant to F. oxysporum. Chemical or genetic alteration of polar auxin transport also conferred increased pathogen resistance. Our results suggest that, similarly to many other pathogenic and nonpathogenic or beneficial soil organisms, F. oxysporum requires components of auxin signaling and transport to colonize the plant more effectively. Potential mechanisms of auxin signaling and transport-mediated F. oxysporum susceptibility are discussed.  相似文献   

3.
The soilborne fungus Fusarium oxysporum f. sp. radicis-lycopersici causes tomato foot and root rot (TFRR), which can be controlled by the addition of the nonpathogenic fungus F. oxysporum Fo47 to the soil. To improve our understanding of the interactions between the two Fusarium strains on tomato roots during biocontrol, the fungi were labeled using different autofluorescent proteins as markers and subsequently visualized using confocal laser scanning microscopy. The results were as follows. i) An at least 50-fold excess of Fo47over F. oxysporum f. sp. radicis-lycopersici was required to obtain control of TFRR. ii) When seedlings were planted in sand infested with spores of a single fungus, Fo47 hyphae attached to the root earlier than those of F. oxysporum f. sp. radicis-lycopersici. iii) Subsequent root colonization by F. oxysporum f. sp. radicis-lycopersici was faster and to a larger extent than that by Fo47. iv) Under disease-controlling conditions, colonization of tomato roots by the pathogenic fungus was significantly reduced. v) When the inoculum concentration of Fo47 was increased, root colonization by the pathogen was arrested at the stage of initial attachment to the root. vi) The percentage of spores of Fo47 that germinates in tomato root exudate in vitro is higher than that of the pathogen F. oxysporum f. sp. radicis-lycopersici. Based on these results, the mechanisms by which Fo47 controls TFRR are discussed in terms of i) rate of spore germination and competition for nutrients before the two fungi reach the rhizoplane; ii) competition for initial sites of attachment, intercellular junctions, and nutrients on the tomato root surface; and iii) inducing systemic resistance.  相似文献   

4.
5.
6.
The fungus Fusarium oxysporum f. sp. radicis-lycopersici is the causal agent of tomato foot and root rot disease. The green fluorescent protein (GFP) was used to mark this fungus in order to visualize and analyze the colonization and infection processes in vivo. Transformation of F oxysporum f. sp. radicis-lycopersici was very efficient and gfp expression was stable for at least nine subcultures. Microscopic analysis of the transformants revealed homogeneity of the fluorescent signal, which was clearly visible in the hyphae as well as in the chlamydospores and conidia. To our knowledge, this is the first report in which this is shown. The transformation did not affect the pathogenicity. Using confocal laser scanning microscopy, colonization, infection, and disease development on tomato roots were visualized in detail and several new aspects of these processes were observed, such as (i) the complete colonization pattern of the tomato root system; (ii) the very first steps of contact between the fungus and the host, which takes place at the root hair zone by mingling and by the attachment of hyphae to the root hairs; (iii) the preferential colonization sites on the root surface, which are the grooves along the junctions of the epidermal cells; and (iv) the absence of specific infection sites, such as sites of emergence of secondary roots, root tips, or wounded tissue, and the absence of specific infection structures, such as appressoria. The results of this work prove that the use of GFP as a marker for F. oxysporum f. sp. radicis-lycopersici is a convenient, fast, and effective approach for studying plant-fungus interactions.  相似文献   

7.
The soil-inhabiting fungal pathogen Fusarium oxysporum has been an increasing threat to Chinese cabbage (Brassica campestris L.). A dark septate endophytic fungus, Veronaeopsis simplex Y34, isolated from Yaku Island, Japan, was evaluated in vitro for the ability to suppress Fusarium disease. Seedlings grown in the presence of the endophyte showed a 71% reduction in Fusarium wilt disease and still had good growth. The disease control was achieved through a synergetic effect involving a mechanical resistance created by a dense network of V. simplex Y34 hyphae, which colonized the host root, and siderophore production acting indirectly to induce a resistance mechanism in the plant. Changes in the relative abundance of the fungal communities in the soil as determined by fluorescently labelled T-RFs (terminal restriction fragments), appeared 3 weeks after application of the fungus. Results showed the dominance of V. simplex Y34, which became established in the rhizosphere and out-competed F. oxysporum.  相似文献   

8.
Secreted-in-xylem (SIX) proteins of the vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici are secreted during infection of tomato and function in virulence or avirulence. F. oxysporum formae speciales have specific host ranges but the roles of SIX proteins in diverse hosts are unknown. We identified homologs of F. oxysporum f. sp. lycopersici SIX1, SIX4, SIX8, and SIX9 in the genome of Arabidopsis infecting isolate Fo5176. A SIX4 homolog (termed Fo5176-SIX4) differed from that of F. oxysporum f. sp. lycopersici (Fol-SIX4) by only two amino acids, and its expression was induced during infection of Arabidopsis. Transgenic Arabidopsis plants constitutively expressing Fo5176-SIX4 had increased disease symptoms with Fo5176. Conversely, Fo5176-SIX4 gene knock-out mutants (Δsix4) had significantly reduced virulence on Arabidopsis, and this was associated with reduced fungal biomass and host jasmonate-mediated gene expression, the latter known to be essential for host symptom development. Full virulence was restored by complementation of Δsix4 mutants with either Fo5176-SIX4 or Fol-SIX4. Thus, Fo5176-SIX4 contributes quantitatively to virulence on Arabidopsis whereas, in tomato, Fol-SIX4 acts in host specificity as both an avirulence protein and a suppressor of other race-specific resistances. The strong sequence conservation for SIX4 in F. oxysporum f. sp. lycopersici and Fo5176 suggests a recent common origin.  相似文献   

9.
The fungal species Fusarium oxysporum is a ubiquitous inhabitant of soils worldwide that includes pathogenic as well as non-pathogenic or even beneficial strains. Pathogenic strains are characterized by a high degree of host specificity and strains that infect the same host range are organized in so-called formae speciales. Strains for which no host plant has been identified are believed to be non-pathogenic strains. Therefore, identification below the species level is highly desired. However, the genetic basis of host specificity and virulence in F. oxysporum is so far unknown. In this study, a robust random-amplified polymorphic DNA (RAPD) marker-based assay was developed to specifically detect and identify the economically important cucumber pathogens F. oxysporum f. sp. cucumerinum and F. oxysporum f. sp. radicis-cucumerinum. While the F. oxysporum radicis-cucumerinum strains were found to cluster in a separate clade based on elongation factor-1alpha phylogeny, strains belonging to F. oxysporum f. sp. cucumerinum were found to be genetically more diverse. This is reflected in the observation that specificity testing of the identified markers using a broad collection of F. oxysporum strains with all known vegetative compatibility groups of the target formae speciales, as well as representative strains belonging to other formae speciales, resulted in two cross-reactions for the F. oxysporum f. sp. cucumerimum marker. However, no cross-reactions were observed for the F. oxysporum f. sp. radicis-cucumerimum marker. This F. oxysporum f. sp. radicis-cucumerimum marker shows homology to Folyt1, a transposable element identified in the tomato pathogen F. oxysporum f. sp. lycopersici and may possibly play a role in host-range specificity in the target forma specialis. The markers were implemented in a DNA array that enabled parallel and sensitive detection and identification of the pathogens in complex samples from diverse origins.  相似文献   

10.
The stimulation exerted by the endophytic bacterium Bacillus pumilus strain SE34 in plant defense reactions was investigated at the ultrastructural level using an in vitro system in which root-inducing T-DNA pea (Pisum sativum L.) roots were infected with the pea root-rotting fungus Fusarium oxysporum f. sp. pisi. In nonbacterized roots, the pathogen multiplied abundantly through much of the tissue including the vascular stele, whereas in prebacterized roots, pathogen growth was restricted to the epidermis and the outer cortex In these prebacterized roots, typical host reactions included strengthening the epidermal and cortical cell walls and deposition of newly formed barriers beyond the infection sites. Wall appositions were found to contain large amounts of callose in addition to being infiltrated with phenolic compounds. The labeling pattern obtained with the gold-complexed laccase showed that phenolics were widely distributed in Fusarium-challenged, bacterized roots. Such compounds accumulated in the host cell walls and the intercellular spaces as well as at the surface or even inside of the invading hyphae of the pathogen. The wall-bound chitin component in Fusarium hyphae colonizing bacterized roots was preserved even when hyphae had undergone substantial degradation. These observations confirm that endophytic bacteria may function as potential inducers of plant disease resistance.  相似文献   

11.
12.
Fourier transform Raman (FT Raman) and IR (FTIR) and (1)H-NMR spectroscopies coupled with differential scanning calorimetry (DSC) were applied to the characterization of root exudates from two cultivars of gladiolus (Spic Span and White Prosperity) with different degrees of resistance and susceptibility to Fusarium oxysporum gladioli, the main pathogen of gladiolus. This work was aimed at correlating the composition of root exudates with the varietal resistance to the pathogen. Spectroscopic analysis showed that White Prosperity root exudate differs from Spic Span root exudate by a higher relative amount of the aromatic-phenolic and sugarlike components and a lower relative amount of carbonylic and aliphatic compounds. DSC analysis confirmed the spectroscopic results and showed that White Prosperity root exudate is characterized by an aromatic component that is present in a higher amount than in the Spic Span root exudate. The results are discussed in relation to the spore germination tests showing that White Prosperity, which is characterized by a remarkable resistance toward F. oxysporum gladioli, exudes substances having a negative influence on microconidial germination of the pathogen; root exudates from Spic Span, one of the most susceptible cultivars to F. oxysporum gladioli, proved to have no effect. White Prosperity's ability to inhibit conidial germination of F. oxysporum gladioli can be mainly related to the presence of a higher relative amount of aromatic-phenolic compounds.  相似文献   

13.
The colonization process of tomato roots inoculated separately or/and simultaneously by a pathogenic Fusarium oxysporum f. sp. lycopersici strain Fol8 and the protective F. oxysporum strain Fo47, genetically tagged with the red and green fluorescent protein genes, respectively, was studied in a hydroponic culture. Plants were coinoculated with Fol8 and Fo47 at two conidial concentration ratios of 1/1 and 1/100, in which biological control was not effective or effective, respectively. First observation of fungi on root was possible 48 h after inoculation at a high inoculum level and 5 days post inoculation at the lower concentration of inoculum. The pattern of root colonization was similar for both strains with the initial development of hyphal network on the upper part of taproot, followed by the growth of hyphae towards the elongation zone, lateral roots and root apices. Finally, the whole elongation zone and root apex were invaded by both strains but no specific infection sites were observed. When coinoculated, both strains could grow very closely or even at the same spot on the root surface. At the nonprotective ratio, Fol8 was the successful colonizer, but application of Fo47 at a concentration 100 times >Fol8 delayed vessel colonization by the pathogen.  相似文献   

14.
The infection of lentil roots by Fusarium oxysporum Schlecht and the responses of the host cells to invading hyphae were examined by light microscopy. Hyphae from inoculum placed on the zone of cell elongation entered the roots at the juncture of epidermal cells within 8 h after inoculation. Although swollen hyphal apices were observed on the epidermal cells, root penetration occurred without formation of these structures or appressoria. The sheath of material found on the surface of uninoculated roots was absent from inoculated roots penetrated by hyphae. Prior to penetration, the epidermal cells became irregular in shape and their cytoplasm appeared to be plasmolysed or granular. Hyphae were observed in the cortex 10—12 h after inoculation and non–penetrated cortical cells were distinctly lobate. Often these lobed cells had a broad, peripheral band of diffuse cytoplasm. When hyphae were first observed in the cortical cells, the walls were ruptured and only slightly stained or unstained by toluidine blue. The inability of such walls to bind the stain may have been the result of the removal of wall components by fungal enzymes. Although extensive proliferation of hyphae was evident throughout the cortex after 24 h of incubation, the endodermis and vascular cylinder were free of hyphae for at least 72 h. Hyphae from inoculum placed on the root hairs or the root apex failed to penetrate the roots during the first 24 h of incubation. The cytological results herein are discussed in relation to the infection of field plantings by this pathogen.  相似文献   

15.
AIMS: To create a fast, sensitive and specific method for identifying Fusarium oxysporum f. sp. cucumerinum and F. o. luffae. METHODS AND RESULTS: Specific DNA bands were selected as probes from RAPD profiles of 13 formae speciales of F. oxysporum. The forma specialis-specific probe OPC18300c and OPC18520f could be used to identify F. o. cucumerinum and F. o. luffae by RAPD-PCR followed dot blot hybridization, respectively. CONCLUSIONS: A specific method for identifying F. o. cucumerinum and F. o. luffae was achieved. SIGNIFICANCE AND IMPACT OF THE STUDY: F. oxysporum formae speciales identification with a DNA probe can be relatively rapid and provides a method to identify the pathogen without host inoculation tests.  相似文献   

16.
17.
Fusarium graminearum is one of the main causal agents of Fusarium Ear Blight on wheat. How the pathogen colonises the entire ear is not known. There is controversy over whether this mycotoxin producing pathogenic fungus invades wheat floral tissue using a necrotrophic or another mode of nutrition. A detailed microscopic investigation has revealed how wild-type fungal hyphae, of the sequenced strain PH-1, colonised susceptible wheat ears and spread from spikelet to spikelet. At the advancing infection front, colonisation of the host cortex occurred ahead of any vascular colonisation and the hyphae adapted to the available intercellular space between host cells. Intercellular hyphae then became abundant and host cells lost their entire cellular contents just prior to intracellular colonisation. No host cells died ahead of the infection. However, while these deep cortex infections progressed, just below the surface the highly photosynthetic chlorenchyma cells were observed to have died prior to colonisation. Behind the infection front, hyphae were abundant in the vasculature and the cortex, often growing through the pit fields of thick walled cells. This high level of inter- and intracellular fungal colonisation resulted in the collapse of the non-lignified cell-types. In this middle zone of infection, hyphal diameters were considerably enlarged. Far behind the infection front inter- and intracellular hyphae were devoid of contents and had often collapsed. At later stages of infection, the pathogen switched from predominately vertical to lateral growth and accumulated below the surface of the rachis. Here the lignified host cell walls became heavily degraded and hyphae ruptured the epidermis and produced an aerial mycelium.  相似文献   

18.
Ito S  Eto T  Tanaka S  Yamauchi N  Takahara H  Ikeda T 《FEBS letters》2004,571(1-3):31-34
Many fungal pathogens of tomato produce extracellular enzymes, collectively known as tomatinases, that detoxify the preformed antifungal steroidal glycoalkaloid alpha-tomatine. Tomatinase from the vascular wilt pathogen of tomato Fusarium oxysporum f. sp. lycopersici cleaves alpha-tomatine into the aglycon tomatidine (Td) and the tetrasaccharide lycotetraose (Lt). Although modes of action of alpha-tomatine have been extensively studied, those of Td and Lt are poorly understood. Here, we show that both Td and Lt inhibit the oxidative burst and hypersensitive cell death in suspension-cultured tomato cells. A tomatinase-negative F. oxysporum strain inherently non-pathogenic on tomato was able to infect tomato cuttings when either Td or Lt was present. These results suggest that tomatinase from F. oxysporum is required not only for detoxification of alpha-tomatine but also for suppression of induced defense responses of host.  相似文献   

19.
Being able to identify specifically a biological control agent at the strain level is not the only requirement set by regulations (EC)1107/2009, it is also necessary to study the interactions of the agent with the plant and the pathogen in the rhizosphere. Fo47 is a soil-borne strain of Fusarium oxysporum which has the capacity to protect several plant species against the pathogenic formae speciales of F. oxysporum inducing wilts. A strain-specific sequence-characterized amplified region marker has been designed which makes it possible to distinguish Fo47 from other strains of F. oxysporum. In addition, a real-time PCR assay has been developed to quantify Fo47 in root tissues. The proposed assay has been validated by following the dynamics of root colonization of tomato plants grown in soil infested with Fo47. Results showed that with the method it is possible to quantify Fo47 in roots in the absence or presence of the pathogen and in the absence or in presence of the native microbial communities.  相似文献   

20.
Inoue I  Namiki F  Tsuge T 《The Plant cell》2002,14(8):1869-1883
The soil-borne fungus Fusarium oxysporum causes vascular wilts of a wide variety of plant species by directly penetrating roots and colonizing the vascular tissue. The pathogenicity mutant B60 of the melon wilt pathogen F. oxysporum f. sp. melonis was isolated previously by restriction enzyme-mediated DNA integration mutagenesis. Molecular analysis of B60 identified the affected gene, designated FOW1, which encodes a protein with strong similarity to mitochondrial carrier proteins of yeast. Although the FOW1 insertional mutant and gene-targeted mutants showed normal growth and conidiation in culture, they showed markedly reduced virulence as a result of a defect in the ability to colonize the plant tissue. Mitochondrial import of Fow1 was verified using strains expressing the Fow1-green fluorescent protein fusion proteins. The FOW1-targeted mutants of the tomato wilt pathogen F. oxysporum f. sp. lycopersici also showed reduced virulence. These data strongly suggest that FOW1 encodes a mitochondrial carrier protein that is required specifically for colonization in the plant tissue by F. oxysporum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号