首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Binding of leukocyte specific integrin CD11b/CD18 to its physiologic ligands is important for the development of normal immune response in vivo. Integrin CD11b/CD18 is also a key cellular effector of various inflammatory and autoimmune diseases. However, small molecules selectively inhibiting the function of integrin CD11b/CD18 are currently lacking. We used a newly described cell-based high-throughput screening assay to identify a number of highly potent antagonists of integrin CD11b/CD18 from chemical libraries containing >100,000 unique compounds. Computational analyses suggest that the identified compounds cluster into several different chemical classes. A number of the newly identified compounds blocked adhesion of wild-type mouse neutrophils to CD11b/CD18 ligand fibrinogen. Mapping the most active compounds against chemical fingerprints of known antagonists of related integrin CD11a/CD18 shows little structural similarity, suggesting that the newly identified compounds are novel and unique.  相似文献   

2.
《The Journal of cell biology》1995,129(4):1143-1153
beta 2 integrin (CD11a,b,c/CD18)-mediated cell adhesion is required for many leukocyte functions. Under normal circumstances, the integrins are nonadhesive, and become adhesive for their cell surface ligands, the intercellular adhesion molecules (ICAMs), or soluble ligands such as fibrinogen and iC3b, when leukocytes are activated. Recently, we defined a peptide derived from ICAM-2, which specifically binds to purified CD11a/CD18. Furthermore, this peptide strongly induces T cell aggregation mainly mediated by CD11a/CD18-ICAM-1 interaction, and natural killer cell cytotoxicity. In the present study, we show that the same ICAM-2 peptide also avidly binds to purified CD11b/CD18, but not to CD11c/CD18. This binding can be blocked by the CD11b antibody OKM10. The peptide strongly stimulates CD11b/CD18-ICAM-1-mediated cell aggregations of the monocytic cell lines THP-1 and U937. The aggregations are energy and divalent cation-dependent. The ICAM-2 peptide also induces CD11b/CD18 and CD11c/CD18-mediated binding of THP- 1 cells to fibrinogen and iC3b coated on plastic. These findings indicate that in addition to induction of CD11a/CD18-mediated cell adhesion, the ICAM-2 peptide may also serve as a "trigger" for high avidity ligand binding of other beta 2 integrins.  相似文献   

3.
We report the identification of novel small molecule agonists of integrin CD11b/CD18, which increased, in a dose-dependent manner, the adhesion of the integrin CD11b/CD18 expressing cells to two physiologically relevant ligands: Fibrinogen and iC3b. Compound 6 showed an ex vivo EC50 of 10.5 μM and in vitro selectivity for binding to the recombinant αA-domain of CD11b/CD18. In silico docking experiments suggest that the compounds recognized a hydrophobic cleft in the ligand-binding αA-domain, implying an allosteric mechanism of modulation of integrin affinity by this novel compound.  相似文献   

4.
Intercellular adhesion molecule-4 (ICAM-4, LW blood group antigen), a member of the immunoglobulin superfamily expressed on red cells, has been reported to bind to CD11a/CD18 and CD11b/CD18 leukocyte integrins. The location of the ICAM-4 binding sites on CD11a/CD18 and CD11b/CD18 are not known. CD11/CD18 integrin I domains have been found to act as major binding sites for physiological ligands and a negatively charged glutamic acid in ICAMs is considered important for binding. ICAM-4 lacks such a residue, which is replaced by an arginine. However, we demonstrate here that ICAM-4 in red cells and transfected fibroblasts interacts specifically with the I domains of CD11a/CD18 and CD11b/CD18 integrins. The binding was inhibited by anti-I domain and anti-ICAM-4 antibodies and it was dependent on divalent cations. Interestingly, ICAM-4 negative red cells were still able to bind to the CD11b/CD18 I domain but the binding of these cells to the CD11a/CD18 I domain was clearly reduced. Using a solid phase assay, we were able to show that isolated I domains directly and specifically bind to purified recombinant ICAM-4 in a cation dependent manner. Competition experiments indicated that the binding sites in ICAM-4 for the CD11a and CD11b I domains are different. However, the ICAM-4 binding region in both I domains seems to overlap with the regions recognized by the ICAM-1 and ICAM-2. Thus we have established that the I domains contain an ICAM-4 binding region in CD11a/CD18 and CD11b/CD18 leukocyte integrins.  相似文献   

5.
The beta2 integrin CD11b/CD18 is an integral membrane protein that is present in the plasma membrane and secondary granules of neutrophils and functions as a major adhesion molecule. Upon cellular activation, there is translocation of intracellular pools of CD11b/CD18 to the plasma membrane in concert with enhanced cellular adhesion. Although much is known about the function of CD11b/CD18, how this protein is transported within the cell is less well defined. Here we report that CD11b/CD18 specifically binds to BAP31, a member of a novel class of sorting proteins regulating cellular anterograde transport. Through experiments aimed at identifying CD11b/CD18-binding proteins, we produced a monoclonal antibody termed E1B2 that recognizes a 28-kDa membrane protein that co-precipitates with CD11b/CD18. Microsequence analysis of the E1B2 antigen revealed that it is BAP31. Co-association of CD11b/CD18 and BAP31 was confirmed in co-immunoprecipitation and protein binding assays. Additional experiments revealed that the binding of BAP31 to CD11b/CD18 was not dependent on divalent cations nor mediated by the I-domain of CD11b. Using glutathione S-transferase fusion chimeras, we determined that binding of CD11b/CD18 to BAP31 is mediated through interactions with the cytoplasmic tail of BAP31. Immunolocalization studies revealed colocalization of BAP31 and CD11b/CD18 within neutrophil secondary granules. Subcellular fractionation studies in polymorphonuclear leukocytes (PMN) revealed similar patterns of redistribution of BAP31 and CD11b/CD18 from fractions enriched in secondary granules to the plasma membrane following stimulation with formylmethionylleucylphenylalanine (fMLP). Given the known sorting properties of BAP31, these findings suggest that BAP31 may play a role in regulating intracellular trafficking of CD11b/CD18 in neutrophils.  相似文献   

6.
Calcium signaling capacity of the CD11b/CD18 integrin on human neutrophils.   总被引:21,自引:0,他引:21  
The CD11b/CD18 integrin is a major cell adhesion molecule of myelomonocytic cells. Exposure of human neutrophils in suspension to CD11b or CD18 monoclonal antibodies (mAbs)2 does not affect the resting level of cytosolic free Ca2+ in these cells; however, a subsequent cross-linking of either of these antibodies triggers a prompt and significant cytosolic-free Ca2+ transient lasting about 10 min. The rise in cytosolic-free Ca2+ (from 130 +/- 2 to 414 +/- 12 nM or 111 +/- 12 to 331 +/- 22 nM caused by cross-linking of CD11b or CD18 subunits, respectively) is due to both mobilization of Ca2+ from intracellular stores and influx of Ca2+ across the plasma membrane. Cross-linking of the common leukocyte antigen (CD45) did not alter the basal level of cytosolic free Ca2+. In accordance with other adherence-induced phenomena and with CD11/CD18-mediated phagocytosis, these Ca2+ signals were only modestly affected by pertussis toxin. Thus, the present data clearly indicate that the CD11b/CD18 integrin on human neutrophils is capable of inducing a prompt cytosolic-free Ca2+ signal. These findings directly support the recent suggestion that the CD11b/CD18 integrin is responsible for the "spontaneous oscillations" of cytosolic-free Ca2+ observed in adherent neutrophils and, at least partially, also explain how integrin-mediated adherence can modify the functional responsiveness of neutrophils to a subsequent agonist stimulation.  相似文献   

7.
Full-length (membrane bound) and truncated (secreted) forms of the beta 2 integrin heterodimer, CD11b/CD18 (Mac-1), were expressed in a human kidney cell line (293) that normally does not express leukocyte adhesion molecules (Leu-CAMs). The biosynthesis of recombinant Mac-1 in 293 cells differed from that reported for leukocytes in that heterodimer formation was not required for CD11b to be exported to the cell surface. A stable cell line was constructed that constitutively secreted the recombinant, truncated Mac-1 heterodimer into growth conditioned cell culture medium. A novel monoclonal antibody that enabled an immunoaffinity method for the selective purification of recombinant Mac-1 heterodimers was identified. Sufficient protein was purified to allow the first measurement of the 50% inhibitory concentration (IC50) for CD11b/CD18 and for the direct comparison of the inhibitory activity of recombinant soluble Mac-1 with that of various CD18 and CD11b specific monoclonal antibodies. Purified recombinant soluble Mac-1 inhibited the binding of neutrophils, activated by opsonized zymosan or fMet-Leu-Phe peptide, to human umbilical vein endothelial cells. Similarly, the recombinant integrin was effective in inhibiting the binding of unactivated neutrophils to tumor necrosis factor (TNF-alpha) activated endothelial cells. The availability of an abundant source of purified, biologically active Mac-1 will enable direct physical and chemical investigations into the relationship between the structure and function of this leukocyte adhesion molecule.  相似文献   

8.
The integrin receptor CD11b/CD18 is normally kept in a low adhesive state and can be activated by many different agents. However, the mechanism underlying receptor activation is not yet fully understood. We hypothesized that the extracellular, membrane-proximal regions of CD11b/CD18 are critically involved in modulation of its adhesive functions. To test our hypothesis, we perturbed the extracellular, membrane-proximal regions of individual CD11b and CD18 subunits and studied their effect on ligand binding, receptor clustering, and lipid raft association. We report here three major findings: 1) perturbation of the extracellular, membrane-proximal region of either subunit leads to enhanced adhesion, caused by changes in receptor conformation, but not the state of receptor clustering or lipid raft association; 2) the CD11b subunit plays a more important role in confining the receptor in an inactive state; and 3) upon modification of the extracellular, membrane-proximal region, the mutant CD11b/CD18 acquires the ability to respond to stimulation by "inside-out" signaling. Our results suggest that the extracellular, membrane-proximal region of the receptor plays an important role in integrin activation and therefore could be targeted by certain cell surface proteins as a conduit to control the integrin "inside-out" signaling process.  相似文献   

9.
CD11b/CD18 (Mac-1) is a member of the leukocyte integrin family, a group of receptors that have been implicated in various effector functions and cellular collaboration in the immune response. It has been shown previously that CD11b/CD18 on cells of monocyte and myeloid lineage appears to undergo rapid activation and acquire new functional receptor specificities after exposure to selected agonists such as adenosine diphosphate (ADP). We now show that ADP induces a reconformation of the CD11b/CD18 receptor with exposure of new epitopes characteristics of this activated state. By direct binding studies, flow cytometry, and immunoprecipitation experiments, it has been found that the mAb 7E3 reacts with CD11b/CD18 only after ADP-stimulation of the cell suspension. The activated state of CD11b/CD18 induced by ADP and recognized by 7E3 can also be recapitulated by agonists inducing transients in cytosolic Ca2+ such as the chemoattractant FMLP. Moreover, this process of receptor activation does not involve quantitative mobilization of the subcellular storage pool of CD11b/CD18 to the plasma membrane. Because 7E3 also recognizes a qualitative, ADP-mediated activated state of the platelet adhesion receptor GP IIb/IIIa, it is suggested that transients in cytosolic Ca2+ might represent early secondary events for a general pathway of rapid activation of integrin receptors and, as such, represent important signals for cellular interactions in the immune response.  相似文献   

10.
We have examined the contributions of endothelial-leukocyte adhesion molecule-1 (ELAM-1) and the complex of leukocyte surface adhesion molecules designated CD11/CD18 to the adhesion of human polymorphonuclear leukocytes (PMN) to cultured human endothelial cells (HEC), activated by rIL-1 beta for 4 or 24 h. Inhibition of PMN attachment to IL-1-activated HEC was measured in a quantitative in vitro monolayer adhesion assay, after treatment with mAb directed to ELAM-1 (mAb H18/17), and to CD11a (mAb L11), CD11b (mAb 44), CD11c (mAb L29), and CD18 (mAb 10F12), alone or in combination. Pretreatment of activated HEC with mAb H18/7 inhibited PMN adhesion by 47 +/- 8% whereas control mAb had no effect. CD11/CD18-directed mAb significantly blocked PMN adhesion to activated HEC (anti-CD11a, 40 +/- 3%; anti-CD11b, 34 +/- 4%; anti-CD18, 78+/- 6% inhibition). The combination of mAb H18/7 and each of the various anti-CD11/CD18 mAb resulted in greater inhibition of PMN adhesion than any Mab alone. After 24 h of rIL-1 beta treatment, when ELAM-1 was markedly decreased but elevated PMN adhesion was still observed, mAb H18/7 had no effect on PMN adhesion. At this time, CD11/CD18-dependent adhesive mechanisms predominated and a CD11c-dependent mechanism became apparent (anti-CD11a, 67 +/- 4% inhibition; anti-CD11b, 45 +/- 9%; anti-CD11c, 26 +/- 6%; anti-CD18, 97 +/- 1%). In summary, PMN adhesion to IL-1-activated HEC involves both CD11/CD18-dependent mechanisms and an ELAM-1-dependent mechanism, and the relative contribution of these varies at different times of IL-1-induced HEC activation. The additive blocking observed at 4 h with mAb H18/7 in combination with CD11/CD18-directed Mab implies that members of the CD11/CD18 complex do not function as an obligate ligand(s) for ELAM-1.  相似文献   

11.
A central feature of integrin interaction with physiologic ligands is the monodentate binding of a ligand carboxylate to a Mg(2+) ion hexacoordinated at the metal ion-dependent adhesion site (MIDAS) in the integrin A domain. This interaction stabilizes the A domain in the high-affinity state, which is distinguished from the default low-affinity state by tertiary changes in the domain that culminate in cell adhesion. Small molecule ligand-mimetic integrin antagonists act as partial agonists, eliciting similar activating conformational changes in the A domain, which has contributed to paradoxical adhesion and increased patient mortality in large clinical trials. As with other ligand-mimetic integrin antagonists, the function-blocking mAb 107 binds MIDAS of integrin CD11b/CD18 A domain (CD11bA), but in contrast, it favors the inhibitory Ca(2+) ion over the Mg(2+) ion at MIDAS. We determined the crystal structures of the Fab fragment of mAb 107 complexed to the low- and high-affinity states of CD11bA. Favored binding of the Ca(2+) ion at MIDAS is caused by the unusual symmetric bidentate ligation of a Fab-derived ligand Asp to a heptacoordinated MIDAS Ca(2+) ion. Binding of the Fab fragment of mAb 107 to CD11bA did not trigger the activating tertiary changes in the domain or in the full-length integrin. These data show that the denticity of the ligand Asp/Glu can modify the divalent cation selectivity at MIDAS and hence integrin function. Stabilizing the Ca(2+) ion at MIDAS by bidentate ligation to a ligand Asp/Glu may provide one approach for designing pure integrin antagonists.  相似文献   

12.
The group of leukocyte integrins CD11a-c/CD18 coordinate disparate adhesion reactions in the immune system through a regulated process of ligand recognition. The participation of the receptor divalent ion binding site(s) in this mechanism of ligand binding has been investigated. As compared with other divalent cations, Mn2+ ions have the unique property to dramatically stimulate the adhesive functions of the leukocyte integrin CD11b/CD18 (Mac-1), expressed on myelo-monocytic cells. This is reflected in a three- to fivefold increased early monocyte adhesion (less than 20 min) to resting, unperturbed endothelial cells, and increased association of CD11b/CD18 with its soluble ligands fibrinogen and factor X. CD11b/CD18 ligand recognition in the presence of Mn2+ ions is specific, time and concentration dependent, and inhibited by anti-CD11b mAb. At variance with Ca(2+)-containing reactions where CD11b/CD18 functions as an inducible receptor activated by adenine nucleotides or chemoattractants, Mn2+ ions induce per se a constitutive maximal ligand binding capacity of CD11b/CD18, that is not further modulated by cell stimulation. Rather than quantitative changes in surface density, Mn2+ ions increase the affinity of CD11b/CD18 for its complementary ligands up to 10-fold, as judged by Scatchard plot analysis of receptor:ligand interaction under these conditions. Furthermore, monocyte exposure to Mn2+ ions induces the expression of activation-dependent neo-antigenic epitopes on CD11b/CD18, selectively recognized by mAb 7E3. These data suggest that in addition to cell-activating stimuli, favorable engagement of divalent ion binding site(s) can provide an alternative pathway to rapidly regulate the receptor affinity of leukocyte integrins.  相似文献   

13.
Upon stimulation with C5a, TNF, or phorbol dibutyrate (PDB), polymorphonuclear leukocytes (PMN) exhibit first an increase then a decrease in adhesion to unstimulated endothelial cells (EC). Essentially all of this adhesion is mediated by the CD18 family of leukocyte integrins on PMN. To determine the individual roles of CD11a/CD18 (LFA-1), CD11b/CD18 (CR3, Mac-1) and CD11c/CD18 (p150,95) in adhesion of PDB-stimulated PMN to unstimulated EC, mAb against the CD11 chains were used. mAb against CD11a or CD11b each blocked adhesion of PMN to EC by approximately 50%, but mAb against CD11c had no effect. Inasmuch as a combination of anti-CD11a and CD11b mAb completely blocked adhesion, it appears that CD11a/CD18 and CD11b/CD18 make approximately equal contributions to binding, and CD11c does not participate. Anti-CD11a or CD11b each blocked adhesion by about 50% throughout the transient time course of PDB-stimulated adhesion, indicating that the capacity of each of these receptors to bind EC is transiently activated by PDB. We next examined the role of ICAM-1 on EC as a ligand for CD18. Two anti-ICAM-1 mAb (LB-2 and 84H10) each inhibited PMN adhesion in a dose-dependent fashion, reaching a maximal inhibition of approximately 50%. Anti-ICAM-1 mAb blocked the CD11a/CD18-dependent portion of adhesion because concomitant use of anti-CD11a and anti-ICAM-1 did not cause additive inhibition. In contrast, anti-CD11b plus anti-ICAM-1 resulted in complete blockade of adhesion. This result suggests that CD11a/CD18 recognizes ICAM-1 on EC, but CD11b/CD18 recognizes a different ligand(s). To determine if CD11b CD18 has the ability to recognize ICAM-1, human macrophages were plated on culture surfaces coated with purified ICAM-1. Interaction of CD11a/CD18 with the surface-bound ICAM-1 resulted in selective down-modulation of CD11a/CD18 from the apical portion of the macrophages. In contrast, ICAM-1-coated surfaces did not down-modulate CD11b/CD18. The data suggest that CD11b/CD18 does not recognize ICAM-1, and that this receptor functions in adhesion of PMN to EC by recognizing novel ligand(s) on EC.  相似文献   

14.
Abstract In this study direct immunofluorescence and flow cytometry with calibration using quantitative bead standards were used to enumerate the cell surface receptors CD11a/CD18, CD11b/CD18 and L-selectin. Holding blood at room temperature and fixation of samples prior to staining induced changes in expression, while immediate staining of polymorphonuclear granulocytes (PMN) in whole blood followed by fixation produced accurate values. The ranges of PMN adhesion molecule expression in 10 normal individuals were CD11a/CD18: 14794–28725, CD11b/CD18: 5300–11939 and L-selectin: 35662–61654 receptors per cell. Differences within individuals over 4 h were also observed. Adhesion molecule expression is used as an index of the adhesive function and state of activation of the cell. The data presented here shows that there is inherent variability in the expression of the PMN adhesion molecules between and within individuals, thus direct comparisons of PMN adhesion molecule expression between patients and “normals” must be interpreted with caution.  相似文献   

15.
16.

Background

CD11b/CD18 is a key adhesion receptor that mediates leukocyte adhesion, migration and immune functions. We recently identified novel compounds, leukadherins, that allosterically enhance CD11b/CD18-dependent cell adhesion and reduce inflammation in vivo, suggesting integrin activation to be a novel mechanism of action for the development of anti-inflammatory therapeutics. Since a number of well-characterized anti-CD11b/CD18 activating antibodies are currently available, we wondered if such biological agonists could also become therapeutic leads following this mechanism of action.

Methods

We compared the two types of agonists using in vitro cell adhesion and wound-healing assays and using animal model systems. We also studied effects of the two types of agonists on outside-in signaling in treated cells.

Results

Both types of agonists similarly enhanced integrin-mediated cell adhesion and decreased cell migration. However, unlike leukadherins, the activating antibodies produced significant CD11b/CD18 macro clustering and induced phosphorylation of key proteins involved in outside-in signaling. Studies using conformation reporter antibodies showed that leukadherins did not induce global conformational changes in CD11b/CD18 explaining the reason behind their lack of ligand-mimetic outside-in signaling. In vivo, leukadherins reduced vascular injury in a dose-dependent fashion, but, surprisingly, the anti-CD11b activating antibody ED7 was ineffective.

Conclusions

Our results suggest that small molecule allosteric agonists of CD11b/CD18 have clear advantages over the biologic activating antibodies and provide a mechanistic basis for the difference.

General significance

CD11b/CD18 activation represents a novel strategy for reducing inflammatory injury. Our study establishes small molecule leukadherins as preferred agonists over activating antibodies for future development as novel anti-inflammatory therapeutics.  相似文献   

17.
The role of beta2-integrins CD11b/CD18 and CD 11c/CD 18 in adhesion and migration of leukocytes on fibrinogen was studied. The monoclonal antibodies against CD11b inhibited the spontaneous adhesion of monocytic THP-1 cells on fibrinogen, whereas antibodies to CD11c more effectively inhibited the adhesion stimulated by chemokine MCP-1. By the RNA-interference method the clones of THP-1 with reduced expression of CD11b and general beta2-subunit CD18 were obtained. MCP-I stimulated the adhesion to fibrinogen of THP-1 cells of wild-type and mutant cells with reduced expression of CD11b (THP-1-CD11b-low), but not of cells with low expression of CD18 (THP-1-CD18-low). THP-1-CD18-low cells were also characterized by the impaired chemotaxis in presence of MCP-1. The data obtained suggest that spontaneous cell adhesion to fibrinogen is mediated to a greater extent by CD11b/CD18 integrins, while chemokine-stimulated adhesion and migration is mostly dependent on CD11c/CD18 molecules.  相似文献   

18.
TNF-alpha can incite neutrophil-mediated endothelial cell damage and neutrophil H2O2 release. Both effects require adherent neutrophils. Using specific mAb, we showed in this in vitro study that the CD18 beta 2-chain and the CD11b alpha M-chain of the CD11/CD18 integrin heterodimer have a major role in both TNF-alpha-induced neutrophil-mediated detachment of human umbilical vein endothelial cells and H2O2 release by TNF-alpha-activated human neutrophils. In contrast to anti-CD18 mAb, which consistently prevented neutrophil activation, anti-CD11a mAb and two of three anti-CD11b mAb did not reduce endothelial cell detachment and neutrophil H2O2 release, although they decreased neutrophil adhesion to human umbilical vein endothelial cells. mAb 904, directed against the bacterial LPS binding region of CD11b, reduced endothelial cell detachment for about 40% and neutrophil H2O2 release for more than 50%, demonstrating that CD11b/CD18 is engaged in TNF-induced neutrophil activation. Dependence on CD11b/CD18 could not be overcome by CD18-independent anchoring of neutrophils via PHA. Additionally, neither induction of increased expression of the endothelial cell adhesion molecules ICAM-1 and ELAM-1, nor subsequent addition of specific mAb, influenced endothelial cell injury or H2O2 release by TNF-activated neutrophils. Interaction with ICAM-1 and ELAM-1 therefore appears not to induce additional activation of TNF-stimulated neutrophils. These studies suggest that a specific, CD11b/CD18-mediated signal, instead of adherence only, triggers toxicity of TNF-activated neutrophils.  相似文献   

19.
A lectin function within CD11b mediates both cytotoxic priming of Mac-1/complement receptor type 3 (CR3) by beta-glucan and the formation of transmembrane signaling complexes with GPI-anchored glycoproteins such as CD16b (FcgammaRIIIb). A requirement for GPI-anchored urokinase plasminogen activator receptor (uPAR; CD87) in neutrophil adhesion and diapedesis has been demonstrated with uPAR-knockout mice. In this study, neutrophil activation conditions generating high-affinity (H-AFN) or low-affinity (L-AFN) beta(2) integrin adhesion were explored. A role for the Mac-1/CR3 lectin domain and uPAR in mediating H-AFN or L-AFN adhesion was suggested by the inhibition of Mac-1/CR3-dependent adhesion to ICAM-1 or fibrinogen by beta-glucan or anti-uPAR. The formation of uPAR complexes with Mac-1/CR3 activated for L-AFN adhesion was demonstrated by fluorescence resonance energy transfer. Conversely, Jurkat cell LFA-1 H-AFN-adhesion to ICAM-1 was not associated with uPAR/LFA-1 complexes, any requirement for GPI-anchored glycoproteins, or inhibition by beta-glucan. A single CD11b lectin site for beta-glucan and uPAR was suggested because the binding of either beta-glucan or uPAR to Mac-1/CR3 selectively masked two CD11b epitopes adjacent to the transmembrane domain. Moreover, treatment with phosphatidylinositol-specific phospholipase C that removed GPI-anchored proteins increased CD11b-specific binding of (125)I-labeled beta-glucan by 3-fold and this was reversed with soluble recombinant uPAR. Conversely, neutrophil activation for generation of Mac-1/CR3/uPAR complexes inhibited CD11b-dependent binding of (125)I-labeled beta-glucan by 75%. These data indicate that the same lectin domain within CD11b regulates both the cytotoxic and adhesion functions of Mac-1/CR3.  相似文献   

20.
One-half of the integrin α-subunit Propeller domains contain and extra vWFA domain (αA domain), which mediates integrin binding to extracellular physiologic ligands via its metal-ion-dependent adhesion site (MIDAS). We used electron microscopy to determine the 3D structure of the αA-containing ectodomain of the leukocyte integrin CD11b/CD18 (αMβ2) in its inactive state. A well defined density for αA was observed within a bent ectodomain conformation, while the structure of the ectodomain in complex with the Fab fragment of mAb107, which binds at the MIDAS face of CD11b and stabilizes the inactive state, further revealed that αA is restricted to a relatively small range of orientations relative to the Propeller domain. Using Fab 107 as probe in fluorescent lifetime imaging microscopy (FLIM) revealed that αA is positioned relatively far from the membrane surface in the inactive state, and a systematic orientation search revealed that the MIDAS face would be accessible to extracellular ligand in the inactive state of the full-length cellular integrin. These studies are the first to define the 3D EM structure of an αA-containing integrin ectodomain and to position the ligand-binding face of αA domain in relation to the plasma membrane, providing new insights into current models of integrin activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号