首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new 175-kDa membrane protein was isolated from chicken gizzard smooth muscle. Antibodies to 175-kDa protein were used for localization of this protein in smooth and cardiac muscles. In both types of muscle 175-kDa protein was localized near plasma membrane. 175-kDa protein was able to interact specifically with vinculin immobilized on polysterene surface. It is suggested that this 175-kDa protein may be involved in physical connection between microfilaments and cell membrane.  相似文献   

2.
The latent membrane protein (LMP) of Epstein-Barr virus functions as an oncogene in rodent cell lines (D. Wang, D. Liebowitz, and E. Kieff, Cell, 43: 831-840, 1985; V. R. Baichwal and B. Sugden, Oncogene, 2: 461-467, 1988) and, therefore, is likely to be essential for immortalization of human B-lymphocytes by Epstein-Barr virus. LMP has a short half-life in Epstein-Barr virus-infected B-lymphoblastoid cells (V. R. Baichwal and B. Sugden, J. Virol., 61: 866-875, 1987; K. P. Mann and D. Thorley-Lawson, J. Virol., 61: 2100-2108, 1987) and in LMP-transformed rodent cell lines (V. R. Baichwal and B. Sugden, Oncogene 2: 461-467, 1988). The hypothesis that the turnover of LMP functions to down-regulate LMP activity has been tested by determining whether the turnover of LMP resembles that of several receptors for growth factors and neurotransmitters. The rapid turnover of LMP in transformed BALB/c 3T3 cells is blocked by cycloheximide, which indicates that turnover requires ongoing protein synthesis. Greater than 90% of newly synthesized LMP is present at the cell surface within 20 min of synthesis, and the detectable protein remains at this location for up to 6 h. If cells are grown in the presence of cycloheximide such that turnover of LMP is inhibited, an internalized pool of LMP can be detected; this observation indicates that turnover of LMP is likely to be preceded by internalization and that, once internalized, LMP is rapidly degraded. Also, this result indicates that the degradation of LMP, as opposed to its internalization, requires ongoing protein synthesis. The turnover of LMP and its biological activity (as assayed by cytotoxicity) are not regulated by factor(s) present only in serum, because the half-life of LMP in cells maintained in serum-free medium does not differ from that in the same cells grown in 5% calf serum. The rapid turnover, the requirement of protein synthesis for turnover, and the internalization of LMP are consistent with the functioning of this protein as a (ligand-dependent or independent) cell surface receptor.  相似文献   

3.
LMP-1 is the only Epstein-Barr virus-encoded latent protein known to have the properties of a transforming oncogene in rodent fibroblasts and the only latent protein, besides EBNA-1, detected in nasopharyngeal carcinoma and Hodgkin's lymphoma biopsies. LMP-1 is characterized by serine/threonine phosphorylation and rapid turnover (half-life, 2 to 3 h) due to specific proteolytic cleavage, which causes release of a phosphorylated C-terminal fragment (p25) into the cytoplasm. We used biochemical, functional, and mutational analyses to identify sites of phosphorylation. All of the phosphorylation sites detected lie in the C-terminal domain. In particular, we identified S-313 and T-324 as functionally important sites. Prevention of phosphorylation at S-313, by altering it to a glycine, prevented detectable phosphorylation of both LMP-1 and p25, indicating that it is a major site on both forms of the molecule. However, lack of detectable phosphorylation had no effect on p25 cleavage or on the ability of LMP-1 to transform Rat-1 fibroblasts. Alteration of S-313 to an aspartate resulted in a form of LMP-1 that was toxic to Rat-1 cells. Alteration of T-324 to a glycine residue had no detectable effect on the ability of LMP-1 to become serine phosphorylated or transform Rat-1 cells. Alteration of T-324 to a glutamate, however, inhibited all detectable phosphorylation and resulted in a form of LMP-1 that was unable to transform Rat-1 fibroblasts. These results are discussed in the context of a model in which LMP-1 function is modulated by phosphorylation and dephosphorylation at S-313 and T-324.  相似文献   

4.
5.
Seven-day-old cultures of rat leg muscle cells were double labelled by addition of [14C] adenine in the culture medium (2 hrs 15 mins) and followed by addition of [32P] phosphate (15 min). The specific activity (S.A.) of the isolated cyclic [14C] adenine 3′ – 5′ monophosphate (cAMP) was similar to that of the bulk ATP. The S.A. of [32P] from cAMP was, however, higher than that of bulk ATP. The S.A. of [32P] from cAMP could be further modified by prevention of normal muscle cell fusion. It is probable that the cAMP with high [32P] S.A. was synthesized from a cell membrane pool of ATP with rapid turnover.  相似文献   

6.
The expression, processing, and intracellular localization of cathepsin D (CD), an endosomal-lysosomal protease involved in malignancy, were studied in rat embryo fibroblasts transformed with an active mutant of c-Ha-ras oncogene. The pattern of the processed molecular forms of CD, comprising two single-chain mature forms of 45 and 43 kDa and two double-chain mature forms of 34 + 9 kDa and 30 + 14 kDa, expressed by the parental cell line was similar to that found in normal rat liver cells. By contrast, in the ras-transfected counterpart this pattern was profoundly altered in that the 45 kDa species was much less represented and the 30 + 14 kDa species virtually absent. In both untransformed and ras-transformed cells the conversion of proCD into mature forms was not inhibited by ammonium chloride, which is known to increase the intravacuolar pH of post-Golgi compartments. Yet, this drug induced the accumulation of the 43 and 45 kDa molecular forms of mature CD in ras-transformed cells and of the 34 kDa molecule in untransformed cells. As compared to controls, in ras-transformed fibroblasts vacuolar compartments containing CD were reduced in number and mostly located toward the periphery of the cell. This contrasted with the perinuclear distribution of CD-positive granules in untransformed cells. Serum deprivation did not affect the growth, nor the intra- and extracellular accumulation of CD activity in ras-transformed cultures, while it blocked the growth and strongly stimulated the accumulation of CD in the medium in cultures of control fibroblasts. Altogether these data are indicative for a crucial role of ras GTPase in the regulation of the transport between post-Golgi organelles.  相似文献   

7.
Despite their importance in cell biology, the mechanisms that maintain the nucleus in its proper position in the cell are not well understood. This is primarily the result of an incomplete knowledge of the proteins in the outer nuclear membrane (ONM) that are able to associate with the different cytoskeletal systems. Two related ONM proteins, nuclear envelope spectrin repeat (nesprin)-1 and -2, are known to make direct connections with the actin cytoskeleton through their NH2-terminal actin-binding domain (ABD). We have now isolated a third member of the nesprin family that lacks an ABD and instead binds to the plakin family member plectin, which can associate with the intermediate filament (IF) system. Overexpression of nesprin-3 results in a dramatic recruitment of plectin to the nuclear perimeter, which is where these two molecules are colocalized with both keratin-6 and -14. Importantly, plectin binds to the integrin alpha6beta4 at the cell surface and to nesprin-3 at the ONM in keratinocytes, suggesting that there is a continuous connection between the nucleus and the extracellular matrix through the IF cytoskeleton.  相似文献   

8.
《The Journal of cell biology》1993,122(6):1185-1196
The first membrane-spanning domain (m1) of the M glycoprotein of avian coronavirus (formerly called E1) is sufficient to retain this protein in the cis-Golgi. When the membrane-spanning domain of a protein which is efficiently delivered to the plasma membrane (VSV G protein) is replaced with m1, the resulting chimera (Gm1) is retained in the Golgi (Swift, A. M., and C. E. Machamer. 1991. J. Cell Biol. 115:19-30). When assayed in sucrose gradients, we observed that Gm1 formed a large oligomer, and that much of this oligomer was SDS resistant and stayed near the top of the stacking gel of an SDS-polyacrylamide gel. The unusual stability of the oligomer allowed it to be detected easily. Gm1 mutants with single amino acid substitutions in the m1 domain that were retained in the Golgi complex formed SDS-resistant oligomers, whereas mutants that were rapidly released to the plasma membrane did not. Oligomerization was not detected immediately after synthesis of Gm1, but occurred gradually with a lag of approximately 10 min, suggesting that it is not merely aggregation of misfolded proteins. Furthermore, oligomerization did not occur under several conditions that block ER to Golgi transport. The lumenal domain was not required for oligomerization since another chimera (alpha m1G), where the lumenal domain of Gm1 was replaced by the alpha subunit of human chorionic gonadotropin, also formed an SDS-resistant oligomer, and was able to form hetero-oligomers with Gm1 as revealed by coprecipitation experiments. SDS resistance was conferred by the cytoplasmic tail of VSV G, because proteolytic digestion of the tail in microsomes containing Gm1 oligomers resulted in loss of SDS resistance, although the protease-treated material continued to migrate as a large oligomer on sucrose gradients. Interestingly, treatment of cells with cytochalasin D blocked formation of SDS-resistant (but not SDS- sensitive) oligomers. Our data suggest that SDS-resistant oligomers form as newly synthesized molecules of Gm1 arrive at the Golgi complex and may interact (directly or indirectly) with an actin-based cytoskeletal matrix. The oligomerization of Gm1 and other resident proteins could serve as a mechanism for their retention in the Golgi complex.  相似文献   

9.
D Liebowitz  D Wang    E Kieff 《Journal of virology》1986,58(1):233-237
Epstein-Barr virus is known to encode three nuclear proteins and one membrane protein (LMP) in latently infected growth-transformed cells. Studies of the plasma membrane localization and orientation of LMP by protease digestion of live cells and by immunofluorescence indicated the following. (i) At least 30% of LMP is in the plasma membrane, as opposed to other cytoplasmic membranes. (ii) A small LMP domain which corresponds to a previously proposed outer reverse turn between the first two transmembrane domains is exposed on the outer cell surface (and two other proposed outer-reverse-turn domains may be exposed), whereas all or almost all of the rest of the protein is not exposed on the outer cell surface. (iii) LMP is present in patches in the cell plasma membrane.  相似文献   

10.
Lee J  Sugden B 《Journal of virology》2007,81(17):9121-9130
Latent membrane protein 1 (LMP1) of Epstein Barr virus (EBV) is important for maintaining proliferation of EBV-infected B cells. LMP1, unlike its cellular counterpart, CD40, signals without a ligand and is largely internal to the plasma membrane. In order to understand how LMP1 initiates its ligand-independent signaling, we focused on a leucine heptad in LMP1's first membrane-spanning domain that was shown to be necessary for LMP1's signaling through NF-kappaB. LZ1EBV, a recombinant EBV genetically altered to express LZ1, a derivative of LMP1 in which a leucine heptad was replaced with alanines, transformed B cells with 56% of wild-type (wt) EBV's efficiency, demonstrating the importance of this heptad. To elucidate the mechanism by which this domain contributes to the functions of LMP1, the properties of the wt and LZ1 were compared in transfected cells. LZ1 failed to home to lipid rafts as efficiently as did wt LMP1. The distribution of tagged derivatives of LZ1 also differed from that of wt LMP1 in transfected cells. LZ1's defect in homing to lipid rafts and altered trafficking likely underlie the defect in transformation of LZ1EBV. While the third and fourth membrane-spanning domains of LMP1 foster its trafficking to the Golgi, the leucine heptad within the first membrane-spanning domain contributes to its trafficking, particularly to internal rafts. B cells that are successfully transformed by LZ1EBV have the same average number of viral genomes and the same fraction of cells with capped LZ1 at the cell surface but express 50% more of the LZ1 allele than wt infected cells.  相似文献   

11.
There are two classes of membrane protein capping on the basis of ligand requirements. Surface immunoglobulin (Slg), the prototype of the first class, requires a single ligand for cap induction. RT1 (rat histocompatibility proteins) requires two antibodies for cap induction. The lateral mobility of Slg is relatively restricted compared with RT1. These differences may be due to differential interaction with the cytoskeleton. After ligand binding 71% of Slg becomes detergent insoluble and is associated with the lymphocyte cytoskeletal matrix. The insolubilization occurs at 4 degrees C and is not inhibited by sodium azide or cytoskeleton-active drugs. The insolubilized ligand-receptor complex can be solubilized by a cytoskeleton destabilizing buffer. In contrast, only 20% of RT1 becomes associated with the lymphocytic cytoskeleton after ligand binding. The ligand-induced receptor-cytoskeleton interaction influences capping behavior and may play a role in cell activation.  相似文献   

12.
Many hnRNP proteins and snRNPs interact with hnRNA in the nucleus of eukaryotic cells and affect the fate of hnRNA and its processing into mRNA. There are at least 20 abundant proteins in vertebrate cell hnRNP complexes and their structure and arrangement on specific hnRNAs is likely to be important for the processing of pre-mRNAs. hnRNP I, a basic protein of ca. 58,000 daltons by SDS-PAGE, is one of the abundant hnRNA-binding proteins. Monoclonal antibodies to hnRNP I were produced and full length cDNA clones for hnRNP I were isolated and sequenced. The sequence of hnRNP I (59,632 daltons and pI 9.86) demonstrates that it is identical to the previously described polypyrimidine tract-binding protein (PTB) and shows that it is highly related to hnRNP L. The sequences of these two proteins, I and L, define a new family of hnRNP proteins within the large superfamily of the RNP consensus RNA-binding proteins. Here we describe experiments which reveal new and unique properties on the association of hnRNP I/PTB with hnRNP complexes and on its cellular localization. Micrococcal nuclease digestions show that hnRNP I, along with hnRNP S and P, is released from hnRNP complexes by nuclease digestion more readily than most other hnRNP proteins. This nuclease hypersensitivity suggests that hnRNP I is bound to hnRNA regions that are particularly exposed in the complexes. Immunofluorescence microscopy shows that hnRNP I is found in the nucleoplasm but in addition high concentrations are detected in a discrete perinucleolar structure. Thus, the PTB is one of the major proteins that bind pre-mRNAs; it is bound to nuclease-hypersensitive regions of the hnRNA-protein complexes and shows a novel pattern of nuclear localization.  相似文献   

13.
14.
Mycoplasma pneumoniae adsorbs to host respiratory epithelium primarily by its attachment organelle, the proper function of which depends upon mycoplasma adhesin and cytoskeletal proteins. Among the latter are the cytadherence-associated proteins HMW1 and HMW2, whose specific roles in this process are unknown. In the M. pneumoniae cytadherence mutant I-2, loss of HMW2 results in accelerated turnover of HMW1 and other cytadherence-accessory proteins, probably by proteolysis. However, both the mechanism of degradation and the means by which these proteins are rendered susceptible to it are not understood. In this study, we addressed whether HMW1 degradation is a function of its presence among specific subcellular fractions and established that HMW1 is a peripheral membrane protein that is antibody accessible on the outer surfaces of both wild-type and mutant I-2 M. pneumoniae but to a considerably lesser extent in the mutant. Quantitation of HMW1 in Triton X-100-fractionated extracts from cells pulse-labeled with [(35)S]methionine indicated that HMW1 is synthesized in a Triton X-100-soluble form that exists in equilibrium with an insoluble (cytoskeletal) form. Pulse-chase analysis demonstrated that over time, HMW1 becomes stabilized in the cytoskeletal fraction and associated with the cell surface in wild-type M. pneumoniae. The less efficient transition to the cytoskeleton and mycoplasma cell surface in mutant I-2 leads to accelerated degradation of HMW1. These data suggest a role for HMW2 in promoting export of HMW1 to the cell surface, where it is stable and fully functional.  相似文献   

15.
Avian retroviruses lacking an oncogene, such as Rous-associated virus 1 (RAV-1), RAV-2, and td mutants of Rous sarcoma virus (RSV), can nevertheless cause leukemias and other neoplastic diseases. During this process, viral DNA integrates near a cellular proto-oncogene, such as c-myc, and thus de-regulates its expression. The virus RAV-0, on the other hand, is known to be non-oncogenic even in long-term in vivo infections of domestic chickens. The major difference between oncogenic and non-oncogenic viruses is found within the U3 region of the long terminal repeat (LTR) which is known to harbor the promoter and enhancer elements. We therefore wanted to see whether viral oncogenicity was correlated with enhancer activity. Using a variety of techniques (including the SV40 'enhancer trap' from which we obtained RSV-SV40 recombinant viruses), we demonstrate that a strong enhancer exists within the LTRs of both RSV and RAV-1. In contrast, no enhancer is present in RAV-0, although RAV-0 has functional promoter elements. Our data therefore strongly support a concept of oncogenesis by enhancer insertion.  相似文献   

16.
Membrane proteins perform crucial communication functions across biological membranes. They represent important targets for therapies and have unique properties for biotechnological applications. Recently, the number of high-resolution membrane protein structures has significantly increased and new insights into the sequence/structure relationships of transmembrane helical assemblies have been gained. Together with new experimental techniques, these advances have improved our understanding of membrane protein folding, stability, and recognition. Consequently, new design strategies are emerging that aim to target and stabilize simple transmembrane helical interfaces.  相似文献   

17.
18.
Human UNG2 is a multifunctional glycosylase that removes uracil near replication forks and in non-replicating DNA, and is important for affinity maturation of antibodies in B cells. How these diverse functions are regulated remains obscure. Here, we report three new phosphoforms of the non-catalytic domain that confer distinct functional properties to UNG2. These are apparently generated by cyclin-dependent kinases through stepwise phosphorylation of S23, T60 and S64 in the cell cycle. Phosphorylation of S23 in late G1/early S confers increased association with replication protein A (RPA) and replicating chromatin and markedly increases the catalytic turnover of UNG2. Conversely, progressive phosphorylation of T60 and S64 throughout S phase mediates reduced binding to RPA and flag UNG2 for breakdown in G2 by forming a cyclin E/c-myc-like phosphodegron. The enhanced catalytic turnover of UNG2 p-S23 likely optimises the protein to excise uracil along with rapidly moving replication forks. Our findings may aid further studies of how UNG2 initiates mutagenic rather than repair processing of activation-induced deaminase-generated uracil at Ig loci in B cells.  相似文献   

19.
Aconitases are iron-sulfur hydrolyases catalysing the interconversion of citrate and isocitrate in a wide variety of organisms. Eukaryotic aconitases have been assigned additional roles, as in the case of the metazoan dual activity cytosolic aconitase-iron regulatory protein 1 (IRP1). This human protein was produced in yeast mitochondria to probe IRP1 folding in this organelle where iron-sulfur synthesis originates. The behaviour of human IRP1 was compared with that of genuine mitochondrial (yeast or human) aconitases. All enzymes were functional in yeast mitochondria, but IRP1 was found to form dense particles as detected by electron microscopy. MS analysis of purified inclusion bodies evidenced the presence of human IRP1 and alpha-ketoglutarate dehydrogenase complex component 1 (KGD1), one of the subunits of alpha-ketoglutarate dehydrogenase. KGD1 triggered formation of the mitochondrial aggregates, because the latter were absent in a KGD1(-) mutant, but it did not efficiently do so in the cytosol. Despite the iron-binding capacity of IRP1 and the readily synthesis of iron-sulfur clusters in mitochondria, the dense particles were not iron-rich, as indicated by elemental analysis of purified mitochondria. The data show that proper folding of dual activity IRP1-cytosolic aconitase is deficient in mitochondria, in contrast to genuine mitochondrial aconitases. Furthermore, efficient clearance of the aggregated IRP1-KGD1 complex does not occur in the organelle, which emphasizes the role of molecular interactions in determining the fate of IRP1. Thus, proper folding of human IRP1 strongly depends on its cellular environment, in contrast to other members of the aconitase family.  相似文献   

20.
The v-myb oncogene of avian myeloblastosis virus causes acute myelomonocytic leukemia in chickens and transforms avian myeloid cells in vitro. Its protein product p48v-myb is a nuclear, sequence-specific, DNA-binding protein which activates gene expression in transient DNA transfection studies. To investigate the relationship between transformation and trans-activation by v-myb, we constructed 15 in-frame linker insertion mutants. The 12 mutants which transformed myeloid cells also trans-activated gene expression, whereas the 3 mutants which did not transform also did not trans-activate. This implies that trans-activation is required for transformation by v-myb. One of the transformation-defective mutants localized to the cell nucleus but failed to bind DNA. The other two transformation-defective mutants localized to the cell nucleus and bound DNA but nevertheless failed to trans-activate. These latter mutants define two distinct domains of p48v-myb which control trans-activation by DNA-bound protein, one within the amino-terminal DNA-binding domain itself and one in a carboxyl-terminal domain which is not required for DNA binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号