首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
利用黑曲霉固态发酵啤酒糟生产饲料复合酶的研究   总被引:2,自引:0,他引:2  
以啤酒糟为主要基质,利用黑曲霉固态发酵生产酸性蛋白酶、木聚糖酶和纤维素酶等多种饲料复合酶,研究了黑曲霉固态发酵培养基组成对复合酶酶活的影响,确定最优培养基配方为:啤酒糟75%,麸皮25%,硫酸铵1%,KH_2PO_4 0.2%,MnSO_4 0.1%、ZnSO_4 0.2%,料水比1:2。在适宜的发酵条件下,经30℃发酵5 d,烘干后得到的复合酶制剂中,具有多种酶活性(以干基计)。其中酸性蛋白酶活力3 800 U/g,木聚糖酶活力12 00 U/g和纤维素酶活力18 U/g。  相似文献   

2.
利用啤酒糟为培养基对黑曲霉固态发酵产β-葡萄糖苷酶的工艺条件进行了优化和动力学研究。单因素试验表明,最适产酶温度、料液比和接种量分别为30℃、1∶5(啤酒糟∶水,g∶mL)和10%(mL/g);利用L9(34)正交试验优化反应条件,结果表明,在25℃,初始料水比为1:5,接种量10%的条件下,培养4d,β-葡萄糖苷酶的酶活可达10.85U/g。动力学研究表明,β-葡萄糖苷酶在96h进入产酶的高峰期,120h达到酶活最大值。  相似文献   

3.
对绿色木霉接种到啤酒糟固态发酵产纤维素酶的培养基和培养条件进行优化,考察发酵物料起始含水量、发酵时间、起始pH值等发酵条件,以及啤酒糟培养基中添加麸皮、氮源种类对产酶的影响。结果表明,以啤酒糟为发酵基质接种绿色木霉生产纤维素酶是可行的。经单因素和正交试验获得最适固态发酵的培养条件为:起始pH 5~6,培养温度28~30℃,发酵4 d;最佳发酵培养基组合为:麸皮比例30%,培养基起始含水量50%,(NH4)2SO4添加量为2.0%~2.5%。  相似文献   

4.
利用啤酒厂的副产物啤酒糟经过发酵以提高其蛋白质含量。试验结果表明,啤酒糟蛋白质含量可提高8 ̄15%,具有良好的经济效益和社会效益。  相似文献   

5.
利用啤酒糟生产淀粉酶和蛋白酶啤酒糟是啤酒生产中制造麦汁时残留在过滤机或过滤槽中的麦芽皮及糖化残渣的湿润固形物,含水75~80%,粗蛋白5%,可消化蛋白质3.5%,粗脂肪2%,可溶性无氮物10%,粗纤维1%。据日本啤酒公司中央研究所冲田等研究,  相似文献   

6.
响应面法优化灵芝药性固体发酵培养基   总被引:1,自引:0,他引:1  
采用单因素试验和响应曲面试验优化灵芝药性固体发酵培养基。优化所得培养基组成为:以啤酒糟为基质,料水比1∶1.4,黄芪12.52%,葡萄糖4.78%,KH2PO40.21%,MgSO4·7H2O 0.25%,VB1 微量。在此优化条件下,灵芪菌质多糖含量高达8.42mg/g,较优化前提高了29.54%。  相似文献   

7.
牦牛骨蛋白的酶解条件研究   总被引:2,自引:0,他引:2  
以蛋白质水解度为评价指标,辅以固形物溶出率,比较了中性蛋白酶、菠萝蛋白酶和木瓜蛋白酶对牦牛骨蛋白的水解效果,研究了酶用量、料液比(底物浓度)、酶解时间对水解度的影响,采用正交试验对酶解条件进行了优化。结果显示,木瓜蛋白酶是牦牛骨蛋白水解的适宜催化剂。在一定条件下,样品水解度随酶用量和酶解时间的增加而增大,底物浓度过低或过高均不利于原料中蛋白质的酶解。木瓜蛋白酶水解牦牛骨蛋白最佳条件为:酶解温度60℃,酶解时间8 h,酶用量3500 U/g蛋白质,料液比1:25(g:m l)。  相似文献   

8.
红酵母产类胡萝卜素固态发酵工艺条件的研究   总被引:7,自引:1,他引:7  
该文研究了红酵母菌株D固态发酵产类胡萝卜素的培养基配方和发酵条件,得到初步优化的培养基为:啤酒糟∶豆粕∶麸皮=1∶3∶2.通过正交试验优化的培养条件是培养基含水量为60%,装量为6/150(即6g干基按设计的初始含水量用盐溶液配好后装于150ml三角瓶中),接种龄为24h,无机盐为0.5g/L MgSO4,其色素产量为14.2μg/g干基。色素产量随接种量增大而增大,细胞生物量、类胡萝卜素产量和含量均随发酵时间的增加逐渐增加,在96h分别达到最大值67.75mg dry-cell/g干基、9.88μg/g干基、145.80μg/g dry-cell,确定其最佳发酵周期为96h。  相似文献   

9.
以鲜活南美白对虾为原料,研究蒸制、糟制和干燥条件对糟卤虾仁汁液损失率、质构、盐分含量、蛋白消化率及感官品质的影响。结果表明:糟卤虾仁最优预处理工艺为蒸制时间8min、4℃低温糟制2h、55℃干燥1h,在此条件下,糟卤虾仁的汁液损失率低,硬度、弹性等质构特性适中,盐分含量适宜(3.01%),蛋白消化率较高(88%以上),并保持高含水量(约60%)、较鲜明红色、软硬适中、内外均匀的感官品质。  相似文献   

10.
草麻黄细胞悬浮培养体系的建立   总被引:2,自引:0,他引:2  
目的:建立草麻黄悬浮培养体系.方法:采用组织培养的方法探讨了水解酪蛋白(CH)、基本培养基、取材时间、和摇床转速对麻黄愈伤组织悬浮培养的影响.结果:MS基本培养基、300mg/l水解酪蛋白、继代25d的愈伤组织、转速110r/min是愈伤组织悬浮培养的适宜条件,愈伤组织细胞增殖量分别为0.76g、0.80g、0.80g、0.80g.结论:初步选择出草麻黄愈伤组织细胞的悬浮培养条件,为麻黄细胞扩大培养及有效成分提取奠定基础.  相似文献   

11.
Distillers' grains are a co-product of ethanol production. In China, only a small portion of distillers' grains have been used to feed the livestock because the amount was so huge. Nowadays, it has been reported that the distillers' grains have the potential for fuel ethanol production because they are composed of lignocelluloses and residual starch. In order to effectively convert distillers' grains to fuel ethanol and other valuable production, sodium hydroxide pretreatment, step-by-step enzymatic hydrolysis, and simultaneous saccharification and fermentation (SSF) were investigated. The residual starch was first recycled from wet distillers' grains (WDG) with glucoamylase to obtain glucose-rich liquid. The total sugar concentration was 21.3 g/L, and 111.9% theoretical starch was hydrolyzed. Then the removed-starch dry distillers' grains (RDDG) were pretreated with NaOH under optimal conditions and the pretreated dry distillers' grains (PDDG) were used for xylanase hydrolysis. The xylose concentration was 19.4 g/L and 68.6% theoretical xylose was hydrolyzed. The cellulose-enriched dry distillers' grains (CDDG) obtained from xylanase hydrolysis were used in SSF for ethanol production. The ethanol concentration was 42.1 g/L and the ethanol productivity was 28.7 g/100 g CDDG. After the experiment, approximately 80.6% of the fermentable sugars in WDG was converted to ethanol.  相似文献   

12.
研究蒸汽爆破预处理对沙柳原料酶解效果的影响,通过响应曲面实验设计法优化蒸汽爆破处理沙柳原料的酶解工艺。结果表明,蒸汽爆破预处理沙柳原料的最佳蒸汽爆破处理条件:压力3.5 MPa、维压时间300 s; 蒸汽爆破最佳酶解条件:pH 4.8、温度53.5 ℃、 每克底物酶加量29.8 FPU。在最优条件下,蒸汽爆破处理沙柳原料的酶解率可以达到最大值87.92%,并验证了数学模型的有效性,试验结果表明蒸汽爆破预处理可以有效提高沙柳原料的水解率。  相似文献   

13.
Batch enzymatic hydrolysis of insoluble Alfalfa Protein Concentrate by Delvolase was carried out at laboratory and at pilot-plant scale coupled to an ultrafiltration reactor with a mineral tubular membrane. Parametric studies were carried out on the batch system to determine the biochemical and hydrodynamical optimum conditions. The hydrolysis conditions selected were 40 degrees C, pH 9.5, initial substrate level 3 g protein/100 g and the enzyme substrate ratio 152 U/g protein. After 5 h of hydrolysis, 96% of the total amount of initial nitrogen was solubilized. The ultrafiltration conditions selected were a 10 000 Nominal Molecular Weight Cut-Off, a transmembrane pressure of 1.5 bar, a flux velocity of 0.8 m/s. Fifty percent of the initial nitrogen appeared in the permeate.  相似文献   

14.
酶法破碎裂殖壶菌提取胞内油脂   总被引:1,自引:0,他引:1  
采用酶法破碎裂殖壶菌提取胞内油脂,进行单因素实验和正交实验优化酶解反应条件,酶解反应的影响因素主次顺序依次为酶用量、温度、时间、pH,最佳酶解工艺参数:55 ℃、pH 9.5、搅拌反应2.5 h、酶用量为菌体生物量的2%.在该条件下,胞内油脂的提取量高达(81.53±0.33) g/L,过氧化值仅为0.15,酸价为0.24.  相似文献   

15.
Summary We have studied the hydrolysis of high melting animal fats by the lipase fromCandida rugosa at temperatures between 20°C and 37°C without the addition of surfactants or organic solvents. To establish the practical applications of this process we investigated the optimal conditions of the reaction at high substrate concentrations (50% fat w/v) to achieve 95% hydrolysis (or better) in 24 hours. Experiments were conducted in solid emulsions without constant stirring (500 ml total reaction volume). Under all conditions tested, edible pork lard was a better substrate than inedible beef tallow yielding up to 96% hydrolysis with as low as 0.3 g lipase/Kg fat or 98% hydrolysis with 0.5 g lipase/Kg fat. The optimum temperature for the hydrolysis of edible pork lard was around 30°C. Inedible beef tallow and pork lard did not exhibit a clear optimum temperature. Inedible lard gave results intermediate between those of edible lard and inedible beef tallow.  相似文献   

16.
Lactic acid production from α-cellulose by simultaneous saccharification and fermentation (SSF) was studied. The cellulose was converted in a batch SSF using cellulase enzyme Cytolase CL to produce glucose sugar andLactobacillus delbrueckii to ferment the glucose to lactic acid. The effects of temperature, pH, yeast extract loading, and lactic acid inhibition were studied to determine the optimum conditions for the batch processing. Cellulose was converted efficiently to lactic acid, and enzymatic hydrolysis was the rate controlling step in the SSF. The highest conversion rate was obtained at 46°C and pH 5.0. The observed yield of lactic acid from α-cellulose was 0.90 at 72 hours. The optimum pH of the SSF was coincident with that of enzymatic hydrolysis. The optimum temperature of the SSF was chosen as the highest temperature the microorganism could withstand. The optimum yeast extract loading was found to be 2.5 g/L. Lactic acid was observed to be inhibitory to the microorganisms’ activity.  相似文献   

17.
(1) In lymphoid cell lines established by Epstein-Barr virus transformation of B-lymphocytes from normal subjects there exist two lipases hydrolysing triolein (the first one with acid optimum pH and the other one with alkaline optimum pH) and one cholesterol esterase (with acidic optimum pH). The acid triolein lipase (optimum pH 3.75-4.0) and the acid cholesterol esterase are activated by taurocholate (optimal concentration between 1 and 2.5 g/l) whereas alkaline triolein-lipase is inhibited by crude taurocholate. (2) Acid lipase deficiency is demonstrated in lymphoid cell lines from a Wolman's patient, using natural substrates, triolein and cholesteryl oleate (residual activity 5 and 8%, respectively). Thus, this similar deficiency demonstrates that, in lymphoid cell lines, triolein and cholesteryl esters are hydrolysed (under the conditions used here) by a single enzyme, i.e., lysosomal acid lipase muted in Wolman's disease. (3) pH profiles of synthetic substrate hydrolysis show marked differences between methylumbelliferyl oleate and methylumbelliferyl palmitate, and are greatly dependent on the assay conditions used. In the presence of optimal concentrations of taurocholate (1-2.5 g/l), nonspecific carboxylesterases are inhibited and acid lipase is activated: in this case, methylumbelliferyl oleate can be used to demonstrate the acid lipase deficiency in Wolman's lines (15-20% of residual activity). Methylumbelliferyl palmitate hydrolysis is less dependent on assay conditions and thus can be more accurately used for the diagnosis of Wolman's disease, with lower residual activity (10-15%) than using methylumbelliferyl oleate. Thus, Epstein-Barr virus-transformed lymphoid cell lines represent an accurate model system in culture for experimental studies of Wolman's disease.  相似文献   

18.
李贤宇  李栋  周博  宋翔  梁红敏 《生物磁学》2011,(17):3270-3274,3292
目的:优化营养保健甘薯汁的制备工艺。方法:本研究以甘薯为原料,在加酶量、作用时间、反应温度、pH及底物浓度五个单因素试验的基础上采用响应面分析法,以甘薯浆中还原糖量为评价指标,对耐高温α-淀粉酶酶解甘薯浆中淀粉的最佳工艺进行了研究,并利用统计学方法建立了耐高温α-淀粉酶酶解甘薯浆中淀粉的二次多项数学模型。结果:最佳酶解条件为:加酶量480U/g,作用时间90min,反应温度77℃,pH值6.0,底物浓度2.6g/10ml。结论:在最佳酶解条件下,甘薯中还原糖最大估计值为13.97345%。实测值为(13.968±0.05)%。  相似文献   

19.
Biotechnological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars. Hydrolysis can be performed enzymatically and with dilute or concentrate mineral acids. The present study used dilute sulfuric acid as a catalyst for hydrolysis of Eucalyptus grandis residue. The purpose of this paper was to optimize the hydrolysis process in a 1.4 l pilot-scale reactor and investigate the effects of the acid concentration, temperature and residue/acid solution ratio on the hemicellulose removal and consequently on the production of sugars (xylose, glucose and arabinose) as well as on the formation of by-products (furfural, 5-hydroxymethylfurfural and acetic acid). This study was based on a model composition corresponding to a 2(3) orthogonal factorial design and employed the response surface methodology (RSM) to optimize the hydrolysis conditions, aiming to attain maximum xylose extraction from hemicellulose of residue. The considered optimum conditions were: H(2)SO(4) concentration of 0.65%, temperature of 157 degrees C and residue/acid solution ratio of 1/8.6 with a reaction time of 20 min. Under these conditions, 79.6% of the total xylose was removed and the hydrolysate contained 1.65 g/l glucose, 13.65 g/l xylose, 1.55 g/l arabinose, 3.10 g/l acetic acid, 1.23 g/l furfural and 0.20 g/l 5-hydroxymethylfurfural.  相似文献   

20.
The overall goal of this work was to develop a saccharification method for the production of third generation biofuel (i.e.bioethanol) using feedstock of the invasive marine macroalga Gracilaria salicornia.Under optimum conditions (120 C and 2% sulfuric acid for 30 min),dilute acid hydrolysis of the homogenized invasive plants yielded a low concentration of glucose (4.1 mM or 4.3 g glucose/kg fresh algal biomass).However,two-stage hydrolysis of the homogenates (combination of dilute acid hydrolysis with enz...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号