首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activated protein C (APC) inactivates factor Va (fVa) by proteolytically cleaving fVa heavy chain at Arg(506), Arg(306), and Arg(679). Factor Xa (fXa) protects fVa from inactivation by APC. To test the hypothesis that fXa and APC share overlapping fVa binding sites, 15 amino acid-overlapping peptides representing the heavy chain (residues 1-709) of fVa were screened for inhibition of fVa inactivation by APC. As reported, VP311-325, a peptide comprising residues 311-325 in fVa, dose-dependently and potently inhibited fVa-dependent prothrombin activation by fXa in the absence of APC. This peptide also inhibited the inactivation of fVa by APC, suggesting that this region of fVa interacts with APC. The peptide inhibited the APC-dependent cleavage of both Arg(506) and Arg(306) because inhibition was observed with plasma-derived fVa and recombinant R506Q and RR306/679QQ fVa. VP311-325 altered the fluorescence emission of dansyl-active site-labeled APC(i) but not a dansyl-active site-labeled thrombin control, showing that the peptide binds to APC(i). This peptide also inhibited the resonance energy transfer between membrane-bound fluorescein-labeled fVa (donor) and rhodamine-active site-labeled S360C-APC (acceptor). These data suggest that peptide VP311-325 represents both an APC and fXa binding region in fVa.  相似文献   

2.
The binding of bovine Factor V, isolated Factor Va, and isolated activation intermediates to single bilayer phospholipid vesicles was studied by light scattering. The vesicles composed of 25% phosphatidylserine and 75% phosphatidylcholine had a mean radius of approximately 163 A as determined by quasi-elastic light scattering. When these vesicles were saturated with Factor V, the radii increased by approximately 120 A in both 0.15 and 1 M NaCl. At saturation, about 35 molecules of Factor V and 141 molecules of Factor Va were bound to each vesicle. Studies of the binding of Factor V and Factor Va at various ionic strengths showed little change in either Kd or n, suggesting that the binding is not electrostatic. The dissociation constants (Kd) and the lipid to protein ratios at saturation, moles/mol (n), obtained by relative light scattering intensities were: Factor V (Kd = 4.3 X 10(-8) M, n = 214); isolated Factor Va (Kd = 1.7 X 10(-7) M, n = 57); component B, Mr = 205,000 (Kd = 1.8 X 10(-7) M, n = 140); component C, Mr = 150,000 (Kd = 7.0 X 10(-7) M, n = 136); component D, Mr = 94,000 (no binding could be demonstrated); component E, Mr = 74,000 (Kd = 3.8 X 10(-7) M, n = 42). The results presented here indicate that the lower Kd exhibited by Factor V compared to Factor Va (components D and E) is primarily due to the interaction present within the component C portion of the molecule which is destroyed when component C is further cleaved to give component D. The interactions responsible for the binding of Factor Va are expressed in component E as well as in its precursor peptide component B. Dissociation of components D and E by the addition of EDTA indicate that component E alone is responsible for the interaction of bovine Factor Va with phospholipid.  相似文献   

3.
Proteolysis of factor Va by factor Xa and activated protein C   总被引:6,自引:0,他引:6  
Bovine Factor Va, produced by selective proteolytic cleavage of Factor V by thrombin, consists of a heavy chain (D chain) of Mr = 94,000 and a light chain (E chain) of Mr = 74,000. These peptides are noncovalently associated in the presence of divalent metal ion(s). Each chain is susceptible to proteolysis by activated protein C and by Factor Xa. Sodium dodecyl sulfate electrophoretic analysis indicates that cleavage of the E chain by either activated protein C or Factor Xa yields two major fragments: Mr = 30,000 and Mr = 48,000. Amino acid sequence analysis indicates that the Mr = 30,000 fragments have identical NH2-terminal sequences and that this sequence corresponds to that of intact E chain. The Mr = 48,000 fragments also have identical NH2-terminal sequences, indicating that activated protein C and Factor Xa cleave the E chain at the same position. Sodium dodecyl sulfate electrophoretic analysis indicates that activated protein C cleavage of the D chain yields two products: Mr = 70,000 and Mr = 24,000. Amino acid sequence analysis indicates that the Mr = 70,000 fragment has the same NH2-terminal sequence as intact D chain, whereas the Mr = 24,000 fragment does not. Factor Xa cleavage of the D chain also yields two products: Mr = 56,000 and Mr = 45,000. The Mr = 56,000 fragment corresponds to the NH2-terminal end of the D chain and Factor V. Functional studies have shown that both chains of Factor Va may be entirely cleaved to products by Factor Xa without loss of activity, whereas activated protein C cleavage results in loss of activity. Since activated protein C and Factor Xa cleave the E chain at the same position, the cleavage of the D chain by activated protein C is responsible for the inactivation of Factor Va.  相似文献   

4.
Thrombin activated factor Va (factor VIIa, residues 1-709 and 1546-2196) has an apparent dissociation constant (Kd,app) for factor Xa within prothrombinase of approximately 0.5 nM. A protease (NN) purified from the venom of the snake Naja nigricollis nigricollis, cleaves human factor V at Asp697, Asp1509, and Asp1514 to produce a molecule (factor VNN) that is composed of a Mr 100,000 heavy chain (amino acid residues 1-696) and a Mr 80,000 light chain (amino acid residues 1509/1514-2196). Factor VNN, has a Kd,app for factor Xa of 4 nm and reduced clotting activity. Cleavage of factor VIIa by NN at Asp697 results in a cofactor that loses approximately 60-80% of its clotting activity. An enzyme from Russell's viper venom (RVV) cleaves human factor V at Arg1018 and Arg1545 to produce a Mr 150,000 heavy chain and Mr 74,000 light chain (factor VRVV, residues 1-1018 and 1546-2196). The RVV species has affinity for factor Xa and clotting activity similar to the thrombin-activated factor Va. Cleavage of factor VNN at Arg1545 by alpha-thrombin (factor VNN/IIa) or RVV (factor VNN/RVV) leads to enhanced affinity of the cofactor for factor Xa (Kd,app approximately 0.5 nM). A synthetic peptide containing the last 13 residues from the heavy chain of factor Va (amino acid sequence 697-709, D13R) was found to be a competitive inhibitor of prothrombinase with respect to prothrombin. The peptide was also found to specifically interact with thrombin-agarose. These data demonstrate that 1) cleavage at Arg1545 and formation of the light chain of factor VIIa is essential for high affinity binding and function of factor Xa within prothrombinase and 2) a binding site for prothrombin is contributed by amino acid residues 697-709 of the heavy chain of the cofactor.  相似文献   

5.
The electron microscopic and hydrodynamic properties of factor V and factor Va-vesicle complexes were determined. Images of negatively stained factor V bound to vesicles showed the protein as a relatively large globular domain (9.5 nm diameter) connected to the membrane through a narrow protein region 0.5-3 nm in length. This connecting region was not always visible and was measured as the distance between the globular region and the apparent vesicle edge. Factor V protein alone usually appeared as two connected globular regions of 10.2 and 6.5 nm diameter. The two-domain protein structure appeared consistent with both the image of factor V alone and bound to the membrane. Factor V had no biological activity in a phospholipid-free prothrombinase assay system used. The proteolytically activated form of factor V generated by digestion with thrombin (factor Va) was at least 30,000 times more active. The electron microscopic images of factor Va-vesicle complexes showed a smaller protein that was more closely associated with the vesicle surface than was factor V. The light chain (Mr about 80,000) component of factor Va also bound to the surface of the vesicles and appeared to be largely external to the membrane. Protein-induced hydrodynamic radius changes for the factor V-vesicle and factor Va-vesicle complexes were 12.8 and 6.3 nm, respectively. The images observed in the electron microscope were used to calculate protein-induced radius changes. Comparison of these values with the experimentally determined hydrodynamic radius changes showed approximate agreement for factor Va-membrane complexes. However, the images of factor V-vesicle complexes suggested smaller hydrodynamic radius changes than were actually observed.  相似文献   

6.
Clathrin-coated vesicles, identified by negative staining with uranyl acetate, were purified from Chlamydomonas reinhardtii. Isolated coated vesicles had diameters ranging from 70 to 140 nm (mean diameter +/- SD of 95 +/- 17 nm, n = 300). These vesicles were markedly heterogeneous in both density and surface charge, as indicated by equilibrium density sedimentation and elution from anion-exchange columns. Highly-purified coated-vesicle fractions contained 2 major polypeptides, identified as the clathrin heavy chain (185 kDa) and the clathrin light chain (40 kDa). Chlamydomonas clathrin heavy chain cross-reacts weakly with an antibody against bovine brain clathrin heavy chain. Coat stability in several buffers was compared to that of bovine brain coated vesicles. Stability was similar, except for a greater stability of Chlamydomonas coated vesicles in 0.5 M Tris at pH 7.0.  相似文献   

7.
The prothrombin activator present in the venom of the mainland tiger snake (Notechis scutatus scutatus) was purified to homogeneity by gel chromatography on Sephadex G-200 followed by ion-exchange chromatography on SP-Sephadex. The venom activator has an apparent molecular weight of 54,000. It consists of a heavy chain (Mr = 32,000) and a light chain (Mr = 23,000) held together by one or more disulfide bridges. The active site is located at the heavy chain region of the molecule. The venom activator contains 8 gamma-carboxyglutamic acid residues/molecule. Gel electrophoretic analysis of prothrombin activation indicates that the venom activator is capable of cleaving both the Arg 274-Thr 275 and Arg 323-Ile 324 bonds of bovine prothrombin. The order of bond cleavage appears to be random since prethrombin-2 and meizothrombin occur as intermediates during prothrombin activation. Prothrombin activation by the venom activator alone is very slow. This is explained by the unfavorable kinetic parameters for the reaction (Km for prothrombin = 105 microM, Vmax = 0.0025 nmol of prothrombin activated per min/microgram of venom activator). Phospholipids plus Ca2+ and Factor Va greatly stimulate venom-catalyzed prothrombin activation. In the presence of 50 microM phospholipid vesicles composed of 20 mol % phosphatidylserine and 80 mol % phosphatidylcholine, the Km drops to 0.2 microM, whereas there is hardly any effect on the Vmax. Factor Va causes a 3,500-fold increase of the Vmax (8.35 nmol of prothrombin activated per min/microgram of venom activator) and a 10-fold decrease of the Km (9.5 microM). The most favorable kinetic parameters are observed in the presence of both 50 microM phospholipid and Factor Va (Km = 0.16 microM, Vmax = 27.9 nmol of prothrombin activated per min/microgram of venom activator). These changes of the kinetic parameters explain the stimulatory effects of Factor Va and phospholipid on venom-catalyzed prothrombin activation. The venom activator slowly converts the Factor Xa-specific chromogenic substrates CH3SO2-D-leucyl-glycyl-L-arginine-p-nitroanilide and N-benzoyl-L-isoleucyl-L-glutamyl-(piperidyl)-glycyl-L-arginyl-p-nitroani lide hydrochloride. Factor Va causes a 7-fold stimulation of chromogenic substrate conversion by the venom activator. This stimulation appears to be the result of the formation of a tight 1:1 complex between the venom activator and Factor Va.  相似文献   

8.
Factor V (FV) is a large (2,196 amino acids) nonenzymatic cofactor in the coagulation cascade with a domain organization (A1-A2-B-A3-C1-C2) similar to the one of factor VIII (FVIII). FV is activated to factor Va (FVa) by thrombin, which cleaves away the B domain leaving a heterodimeric structure composed of a heavy chain (A1-A2) and a light chain (A3-C1-C2). Activated protein C (APC), together with its cofactor protein S (PS), inhibits the coagulation cascade via limited proteolysis of FVa and FVIIIa (APC cleaves FVa at residues R306, R506, and R679). The A domains of FV and FVIII share important sequence identity with the plasma copper-binding protein ceruloplasmin (CP). The X-ray structure of CP and theoretical models for FVIII have been recently reported. This information allowed us to build a theoretical model (994 residues) for the A domains of human FV/FVa (residues 1-656 and 1546-1883). Structural analysis of the FV model indicates that: (a) the three A domains are arranged in a triangular fashion as in the case of CP and the organization of these domains should remain essentially the same before and after activation; (b) a Type II copper ion is located at the A1-A3 interface; (c) residues R306 and R506 (cleavage sites for APC) are both solvent exposed; (d) residues 1667-1765 within the A3 domain, expected to interact with the membrane, are essentially buried; (e) APC does not bind to FVa residues 1865-1874. Several other features of factor V/Va, like the R506Q and A221V mutations; factor Xa (FXa) and human neutrophil elastase (HNE) cleavages; protein S, prothrombin and FXa binding, are also investigated.  相似文献   

9.
The inactivation of Factor Va by plasmin was studied in the presence and absence of phospholipid vesicles and calcium ions. The cleavage patterns of bovine Factor Va and its isolated subunits were analyzed using polyacrylamide gel electrophoresis, and the progress of inactivation was monitored by clotting assays and measurements of prothrombin activation using 5-dimethylaminonaphthalene-1-sulfonylarginine-N-(3-ethyl-1,5-penta nediyl)amide. In addition, the ability of prothrombin and Factor Xa to protect Factor Va from inactivation by human plasmin was examined. The data presented indicate that the cofactor Factor Va is inactivated rapidly upon its interaction with human plasmin. The rate of inactivation is significantly enhanced in the presence of phospholipid vesicles, suggesting that the inactivation process is a membrane-bound phenomenon. The isolated D component (heavy chain of factor Va) was found to be slowly degraded by human plasmin, giving rise to cleavage products different from those obtained with activated protein C and Factor Xa. However, the 48- and 30-kDa fragments obtained from human plasmin degradation of component E (light chain of Factor Va) appear to be similar to those obtained following the proteolysis of the same subunit by activated protein C and Factor Xa.  相似文献   

10.
Coagulation factor Va is a cofactor which combines with the serine protease factor Xa on a phospholipid surface to form the prothrombinase complex. The phospholipid-binding domain of bovine factor Va has been reported to be located on the light chain of the molecule and more precisely on a fragment of Mr = 30,000 which is obtained after digestion of factor Va light chain by factor Xa. This proteolytic fragment is located in the NH2-terminal part of factor Va light chain (residues 1564-1765). In order to further characterize the lipid-binding domain of bovine factor Va, isolated bovine light chain was preincubated with synthetic phospholipid vesicles (75% phosphatidylcholine, 25% phosphatidylserine) and digested with trypsin, chymotrypsin, and elastase. Two peptide regions protected from proteolytic cleavage were identified and characterized from each proteolytic digestion. A comparison of the NH2-terminal sequence and amino acid composition of the two tryptic peptides with the deduced sequence of human factor V indicates a match with residues 1657-1791 of the light chain of human factor V for one peptide and residues 1546-1656 for the other peptide. When chymotrypsin or elastase were used for digestion, the NH2-terminal sequence of one peptide showed a match with residues 1667-1797 of the light chain, while the other peptide presented an NH2-terminal sequence identical with the previously described for the bovine factor Va light chain. When these peptides were assayed for direct binding to phospholipid vesicles, only the tryptic and the chymotryptic peptides covering the middle region of the A3 domain of the bovine factor Va light chain demonstrated an ability to interact with phospholipid vesicles. Thus, knowing that the factor Xa cleavage site on the factor Va light chain is located between residues 1765 and 1766 of the light chain this lipid-binding region of the bovine factor Va is further localized to amino acid residues 1667-1765.  相似文献   

11.
The blood coagulation proteinase, thrombin, converts factor V into factor Va through a multistep activation pathway that is regulated by interactions with thrombin exosites. Thrombin exosite interactions with human factor V and its activation products were quantitatively characterized in equilibrium binding studies based on fluorescence changes of thrombin covalently labeled with 2-anilinonaphthalene-6-sulfonic acid (ANS) linked to the catalytic site histidine residue by Nalpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-CH2Cl ([ANS]FPR-thrombin). Exosite I was shown to play a predominant role in the binding of factor V and factor Va from the effect of the exosite I-specific ligand, hirudin54-65, on the interactions. Factor V and factor Va bound to exosite I of [ANS]FPR-thrombin with similar dissociation constants of 3.4 +/- 1.3 and 1.1 +/- 0.4 microM and fluorescence enhancements of 182 +/- 41 and 127 +/- 17%, respectively. Native thrombin and labeled thrombin bound with similar affinity to factor Va. Among factor V activation products, the factor Va heavy chain was shown to contain the site of exosite I binding, whereas exosite I-independent, lower affinity interactions were observed for activation fragments E and C1, and no detectable binding was observed for the factor Va light chain. The results support the conclusion that the factor V activation pathway is initiated by exosite I-mediated binding of thrombin to a site in the heavy chain region of factor V that facilitates the initial cleavage at Arg709 to generate the heavy chain of factor Va. The results further suggest that binding of thrombin through exosite I to factor V activation intermediates may regulate their conversion to factor Va and that similar binding of thrombin to the factor Va produced may reflect a mode of interaction involved in the regulation of prothrombin activation.  相似文献   

12.
Human coagulation factor V is a protein cofactor that is an essential component of the prothrombinase complex. A full-length factor V cDNA has been subcloned into the mammalian expression vector pDX and used to transfect COS cells. Approximately 95 +/- 4% of the recombinant human factor V (rHFV) synthesized in COS cells is secreted into the culture medium. Forty-eight hours after transfection rHFV antigen levels in the conditioned medium were 70 +/- 15 ng/mL. Factor V activity determined by fibrometer assay increased approximately 5-fold from 0.027 +/- 0.012 to 0.124 +/- 0.044 unit/mL following activation by the factor V activating enzyme from Russell's viper venom (RVV-V). A chromogenic assay specific for factor Va indicated that recombinant factor V had 3.8 +/- 1.3% of the activity of the activated protein. The estimated specific activity of the recombinant factor Va was approximately 1800 +/- 500 units/mg, which is similar to the specific activity of purified plasma factor Va of 1700-2000 units/mg. Immunoprecipitation of [35S]methionine-labeled rHFV revealed a single high molecular mass component (approximately 330 kDa). Treatment of rHFV with thrombin or RVV-V resulted in the formation of proteolytic products that were similar to those seen with plasma factor V. We have also expressed a mutant, rHFV-des-B811-1441, that lacks a large portion of the highly glycosylated connecting region that is present in factor V. Immunoprecipitation of [35S]methionine-labeled rHFV-des-B811-1441 revealed a single-chain polypeptide with Mr approximately 230 kDa. This mutant constitutively expressed 38 +/- 7% of the activity of the RVV-V-activated protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A monoclonal antibody which inhibits the factor Va:factor Xa interaction   总被引:4,自引:0,他引:4  
An immunoprecipitation technique has been used to determine the subunit specificity of two of the monoclonal antibodies to bovine Factor V(Va) developed by this laboratory. One of the antibodies is specific for the 74,000-dalton subunit (the E chain) of Factor Va, and the other antibody is specific for the 94,000-dalton subunit (the D chain). The binding of Factor Va to phospholipid was studied by light scattering, and the interaction of Factor Xa with phospholipid-bound Factor Va was examined using 5-dimethylaminonaphthalene-1-sulfonyl-glutamyl-glycyl-arginyl-Xa (Dns-EGR-Xa). Neither the antibody specific for the E chain nor the antibody specific for the D chain inhibit the binding of Factor Va to phospholipid vesicles. The antibody specific for the E chain blocks the increase in fluorescence polarization seen when Factor Va is added to a solution of Dns-EGR-Xa, phospholipid vesicles and calcium. This antibody also inhibits the association of Dns-EGR-Xa with phospholipid-bound Factor Va as determined by gel-exclusion high pressure liquid chromatography. The antibody specific for the D chain of Factor Va does not block the increase in polarization seen when Factor Va is added to a solution of Dns-EGR-Xa, phospholipid, and calcium. It was concluded that the antibody specific for the E chain of Factor Va binds at or near the Factor Xa-binding site on the E chain and that the Factor Va E chain plays a significant role in binding Factor Xa.  相似文献   

14.
Coagulation Factor V contains copper ion   总被引:6,自引:0,他引:6  
Preparations of bovine and human coagulation Factor V were analyzed for copper using both atomic absorption and atomic emission spectroscopy. All preparations of the bovine and human protein were found to contain copper ion at a ratio of 1 copper ion bound per mol (Mr = 330,000) of Factor V. As a result of copper binding and sequence homology between ceruloplasmin and Factor V, bovine Factor V and thrombin-activated Factor V (Va) were assessed with respect to their visible and near ultraviolet absorption spectra and to their ability to oxidize N,N-dimethyl-p-phenylenediamine (a substrate for ceruloplasmin). Factor V and Factor Va exhibited absorption spectra with no maxima at either 310 or 610 nm, indicating that the copper is not bound in a site analogous to Type I or Type III copper sites in ceruloplasmin. Further, Factor V and Factor Va are not capable of serving as catalysts for the oxidation of N,N-dimethyl-p-phenylenediamine under solution conditions that are optimum for ceruloplasmin oxidase activity. These data suggest that the copper ion bound to Factor V may be functionally and structurally distinct from the Type I and Type III copper ion bound to ceruloplasmin.  相似文献   

15.
The ultrastructure of embryonic chick cartilage proteoglycan core protein was investigated by electron microscopy of specimens prepared by low angle shadowing. The molecular images demonstrated a morphological substructural arrangement of three globular and two linear regions within each core protein. The internal globular region (G2) was separated from two terminally located globular regions (G1 and G3) by two elongated strands with lengths of 21 +/- 3 nm (E1) and 105 +/- 22 nm (E2). The two N-terminal globular regions, separated by the 21-nm segment, were consistently visualized in well spread molecules and showed little variation in the length of the linear segment connecting them. The E2 segment, however, was quite variable in length, and the C-terminal globular region (G3) was detected in only 53% of the molecules. The G1, G2, and G3 regions in chick core protein were 10.1 +/- 1.7 nm, 9.7 +/- 1.3 nm, and 8.3 +/- 1.3 nm in diameter, respectively. These results are similar to those described previously for proteoglycan core proteins isolated from rat chondrosarcoma, bovine nasal cartilage, and pig laryngeal cartilage (Paulsson, M., Morgelin, M., Wiedemann, H., Beardmore-Gray, M., Dunham, D., Hardingham, T., Heinegard, D., Timpl, R., and Engel, J. (1987) Biochem. J. 245, 763-772). However, a significant difference was detected between the length of the elongated strand (E2) of core proteins isolated from chick cartilage, E2 length = 105 +/- 22 nm, compared to bovine nasal cartilage, E2 length = 260 +/- 39 nm. The epitope of the proteoglycan core protein-specific monoclonal antibody, S103L, was visualized by electron microscopy, and the distance from the core protein N terminus to the S103L binding site was measured. The S103L binding site was localized to the E2 region, 111 +/- 20 nm from the G1 (N terminus) domain and 34 nm from the G3 (C terminus) domain. cDNA clones selected from an expression vector library of chicken cartilage mRNA also show this epitope to be located near the C-terminal region (R. C. Krueger, T. A. Fields, J. Mensch, and B. Schwartz (1990) J. Biol. Chem. 265, 12088-12097).  相似文献   

16.
Thirteen monoclonal antibodies designated as MFC-1 to MFC-13 were obtained from hybridoma cells cloned after the fusion of mouse myeloma cells with spleen cells of mice immunized with purified human protein C. Studies were made to determine where the antibodies bound to the molecule of protein C and whether they affected the biological actions of protein C. By using the immunoblotting technique, six of these antibodies were shown to bind to the light chain of protein C, and five to the heavy chain of protein C and also activated protein C. The remaining two antibodies bound to neither the light chain nor the heavy chain, though both antibodies bound to the intact protein C. Antibodies specific for the light chain did not bind to the gamma-carboxyglutamic acid-domain. Two of the antibodies specific for the heavy chain (MFC-13 and -1) inhibited the amidolytic activity of activated protein C. The MFC-13 also inhibited the activity of bovine activated protein C, but not that of human Factor IXa, Factor Xa, or thrombin. In addition to these two antibodies, another one for the heavy chain (MFC-10) and two antibodies for the light chain (MFC-9 and -11) inhibited the inactivation of Factor Va by human activated protein C. One of the antibodies which inhibited the enzyme activity (MFC-1) blocked the inhibition of activated protein C by protein C inhibitor. Another one for the heavy chain (MFC-5) inhibited the activation of protein C by thrombin regardless of the presence or absence of thrombomodulin. Based on these results, we have established the positions of some monoclonal antibody-binding sites on the protein C molecule.  相似文献   

17.
M L Pusey  G L Nelsestuen 《Biochemistry》1984,23(25):6202-6210
The interactions of factor V and factor Va light chain with phospholipid vesicles were compared. The results showed that the factor Va light chain bound with the same parameters as factor V when the proteins were present at similar densities on the membrane. The protein-vesicle collisional efficiency was 30-50% for both factor V and factor Va light chain. The factor Va light chain bound at a higher density, and the additional binding interactions had lower affinity. The dissociation process showed negative cooperativity, possibly due to competition for acidic phospholipids in the membrane. The higher molar packing density produced more rapid protein-membrane dissociation rate constants. However, when factor V and Va light chains were present at similar molar densities on the vesicle, the dissociation rates, estimated by two methods, were similar. Analysis of dissociation rates also showed that factor Va interacted with factor Xa on the membrane surface while factor Va light chain did not. Factor Va generated by thrombin digestion of factor V did not result in a major loss of membrane-bound protein mass unless ethylenenediaminetetraacetic acid was present; in the latter case the mass changes indicated that all peptides were removed from the membrane except factor Va light chain. Equilibrium and dynamic measurements showed that ionic strength had a major effect on the dissociation rate but not on the association process. The salt effect indicated interaction between oppositely charged species with the product of the number of charges equal to at least -5.5. Factor Va light chain appeared to interact with phospholipids via a general charge interaction rather than via a specific charge stoichiometry.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Human high Mr kininogen was purified from normal plasma in 35% yield. The purified high Mr kininogen appeared homogeneous on polyacrylamide gels in the presence of sodium dodecyl sulfate and mercaptoethanol and gave a single protein band with an apparent Mr = 110,000. Using sedimentation equilibrium techniques, the observed Mr was 108,000 +/- 2,000. Human plasma kallikrein cleaves high Mr kininogen to liberate kinin and give a kinin-free, two-chain, disulfide-linked molecule containing a heavy chain of apparent Mr = 65,000 and a light chain of apparent Mr = 44,000. The light chain is histidine-rich and exhibits a high affinity for negatively charged materials. The isolated alkylated light chain quantitatively retains the procoagulant activity of the single-chain parent molecule. 125I-Human high Mr kininogen undergoes cleavage in plasma during contact activation initiated by addition of kaolin. This cleavage, which liberates kinin and gives a two-chain, disulfide-linked molecule, is dependent upon the presence of prekallikrein and Factor XII (Hageman factor) in plasma. Addition of purified plasma kallikrein to normal plasma or to plasmas deficient in prekallikrein or Factor XII in the presence or absence of kaolin results in cleavage of high Mr kininogen and kinin formation.  相似文献   

19.
Human blood coagulation Factor XIa was reduced and alkylated under mild conditions. The mixture containing alkylated heavy and light chains was subjected to affinity chromatography on high Mr kininogen-Sepharose. Alkylation experiments using [14C]iodoacetamide showed that a single disulfide bridge between the light and heavy chains was broken to release the light chain. The alkylated light chain (Mr = 35,000) did not bind to high Mr kininogen-Sepharose while the heavy chain (Mr = 48,000), like Factors XI and XIa, bound with high affinity. The isolated light chain retained the specific amidolytic activity of native Factor XIa against the oligopeptide substrate, pyroGlu-Pro-Arg-p-nitroanilide. Km and kcat values for this substrate were 0.56 mM and 350 s-1 for both Factor XIa and its light chain, and the amidolytic assay was not affected by CaCl2. However, in clotting assays using Factor XI-deficient plasma in the presence of kaolin, the light chain was only 1% as active as native Factor XIa. Human coagulation Factor IX was purified and labeled with sodium [3H]borohydride on its carbohydrate moieties. When this radiolabeled Factor IX was mixed with Factor XIa, an excellent correlation was observed between the appearance of Factor IXa clotting activity and tritiated activation peptide that was soluble in cold trichloroacetic acid. Factor XIa in the presence of 5 mM CaCl2 activated 3H-Factor IX 600 times faster than Factor XIa in the presence of EDTA. In the absence of calcium, Factor XIa and its light chain were equally active in activating 3H-Factor IX. In contrast to Factor XIa, the light chain in this reaction was inhibited by calcium ions such that, in the presence of 5 mM CaCl2, Factor XIa was 2000 times more effective than its light chain. Neither phospholipid nor high Mr kininogen and kaolin affected the activity of Factor XIa or its light chain in the activation of 3H-Factor IX. These observations show that the light chain region of Factor XIa contains the entire enzymatic active site. The heavy chain region contains the high affinity binding site for high Mr kininogen. Furthermore the heavy chain region of Factor XIa plays a major role in the calcium-dependent mechanisms that contribute to the activation of Factor IX.  相似文献   

20.
Factor V(a) is a cofactor for the serine protease factor X(a) that activates prothrombin to thrombin in the presence of Ca(2+) and a platelet membrane surface. A platelet membrane lipid, phosphatidylserine (PS), regulates the proteolytic activity of factor X(a) as well as the structure of prothrombin. Here we ask whether PS also regulates the structure and cofactor activity of factor V(a), which is a heterodimer composed of one heavy chain (A1-A2 domains) and one light chain (A3-C1-C2 domains). We use fluorescence, circular dichroism, equilibrium dialysis, and activity measurements to demonstrate the following: (1) Factor V(a) has four sites for dicaproyl-sn-glycero-3-phospho-L-serine (C(6)PS, a soluble form of PS); the heavy and light chains each bind two C(6)PS molecules. (2) In the absence of Ca(2+), only two sites remain, one in the heavy chain and another in the light chain. (3) Binding to these sites causes conformational changes evidenced by changes in intrinsic fluorescence and in CD spectra and changes in cofactor activity. (4) At least some of the four lipid binding sites are nonspecific with respect to soluble lipid species, but the site(s) that regulate(s) cofactor activity is (are) specific for C(6)PS, phosphatidic acid, or phosphatidyl(homo)serine and produce a response comparable to that seen with a PS-containing membrane. (5) Like Ca(2+), C(6)PS also mediates the interaction between factor V(a) heavy (V(a)-HC) and light (V(a)-LC) chains. We conclude that PS regulates both the cofactor and the enzyme of the prothrombin-activating complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号