首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in-frame lacZ-ftsZ gene fusion under lac control was fortuitously constructed by subcloning an EcoRI fragment that contains approximately 90% of the ftsZ gene. The identity of the gene fusion was confirmed by isolating an amber mutation in the hybrid gene and then using it to reconstruct the ftsZ gene, which now contained an amber mutation. The hybrid protein (ZZ), which does not possess ftsZ activity, contains seven amino acids of lacZ at its amino terminal end, followed by 35,000 daltons of the carboxyl end of the ftsZ protein. Induction of the hybrid protein resulted in a rapid cessation of cell division which could be reversed by removing the lac inducer. This inhibition of division could be prevented by an increased gene dosage of ftsZ or the presence of the sulB allele of ftsZ, which is known to code for an altered but functional ftsZ protein. An increased gene dosage of ftsZ or the presence of the sulB allele of ftsZ is known to overcome sulA-mediated inhibition of division during the SOS response. Thus, our results suggest that ZZ is an analog of sulA and may aid in determining how sulA inhibits cell division.  相似文献   

2.
3.
Mutations in the essential cell division gene ftsZ confer resistance to SulA, a cell division inhibitor that is induced as part of the SOS response. In this study we have purified and characterized the gene products of six of these mutant ftsZ alleles, ftsZ1, ftsZ2, ftsZ3, ftsZ9, ftsZ100, and ftsZ114, and compared their properties to those of the wild-type gene product. The binding of GTP was differentially affected by these mutations. FtsZ3 exhibited no detectable GTP binding, and FtsZ9 and FtsZ100 exhibited markedly reduced GTP binding. In contrast, FtsZ1 and FtsZ2 bound GTP almost as well as the wild type, and FtsZ114 displayed increased GTP binding. Furthermore, we observed that all mutant FtsZ proteins exhibited markedly reduced intrinsic GTPase activity. It is likely that mutations in ftsZ that confer sulA resistance alter the conformation of the protein such that it assumes the active form.  相似文献   

4.
In Escherichia coli, the ftsZ gene is thought to be an essential cell division gene. Several dominant mutations that make lon mutant cells refractory to the cell division inhibitor SulA, sulB9, sulB25, and sfiB114, have been mapped to the ftsZ gene. DNA sequence analysis of these mutations and the sfiB103 mutation confirmed that all of these mutations mapped within the ftsZ gene and revealed that the two sulB mutations were identical and by selection for resistance to higher levels of SulA, contained a second mutation within the ftsZ gene. We therefore propose that these mutations be redesignated ftsZ(Rsa) for resistance to SulA. A procedure involving mutagenesis of ftsZ cloned on low-copy-number vectors was used to isolate three additional ftsZ(Rsa) mutations. DNA sequence analysis of these mutations revealed that they were distinct from the previously isolated mutations. One of these mutations, ftsZ3(Rsa), led to an altered FtsZ protein that could no longer support cell growth but still conferred the Rsa phenotype in the presence of ftsZ+. In addition to being resistant to SulA, all ftsZ(Rsa) mutations also conferred resistance to a LacZ-FtsZ hybrid protein (ZZ). One possibility is that FtsZ functions as a multimer and that FtsZ(Rsa) mutant proteins have an increased ability for multimerization, making them resistant to SulA and ZZ.  相似文献   

5.
Cells containing the pleiotropic Escherichia coli mutation lon filament extensively and die after exposure to ultraviolet light. Outside suppressors of the ultraviolet sensitivity, called sul, have previously been described at two loci; these mutations reverse the ultraviolet sensitivity of lon strains but do not affect the mucoidal or degradation defect of these strains. An isogenic set of strains carrying combinations of lon, sulA, and sulI was constructed, and their behavior during normal growth and after ultraviolet treatment was studied. sulA mutations had no detectable phenotype in lon+ cells; the lon sulA strains filamented transiently after ultraviolet irradiation, as did lon+ sul+ cells. We found that the sulB mutation, which alters cell morphology and slows recovery from transient filamentation after ultraviolet treatment, was epistatic to both lon and sulA. Whereas sulA mutations were recessive to the wild-type allele, sulB was partially dominant. The simplest model to account for our observations is that sulA and lon participate in a pathway of filamentation independent of that which produces transient filamentation in wild-type strains; sulB product may be the target of sulA action and may play a role in normal cell division.  相似文献   

6.
A study was made of the SOS induction of the gene sulA of Escherichia coli K12 in relation to the gene dosage of the gene recA. In experiments the sulA::lacZ fusion strain PQ37 and derivatives of PQ37 with the multi-copy plasmids pDR1453 or pBR322 were used. The SOS response was induced with nitrofurantoin, SOS induction of the gene sulA was determined on the basis of the amount of beta-galactosidase synthesized, i.e. by the SOS chromotest (Quillardet et al., 1982a). It was found in this work that cells with the plasmid pDR1453, which contain the gene recA of E. coli K12 (Sancar and Rupp, 1979), have a decreased SOS induction of the gene sulA. Cells with the plasmid pBR322 do not exhibit this decrease. Inactivation of the gene recA in the plasmid pDR1453 with preservation of the functional gene recA in the chromosome leads to a restoration of 'standard' SOS induction of the gene sulA. The results show that the amount of the gene product of the gene recA affects the SOS induction of the gene sulA.  相似文献   

7.
8.
9.
Interaction between FtsZ and inhibitors of cell division.   总被引:30,自引:13,他引:17       下载免费PDF全文
J Huang  C Cao    J Lutkenhaus 《Journal of bacteriology》1996,178(17):5080-5085
The interaction between inhibitors of cell division and FtsZ were assessed by using the yeast two-hybrid system. An interaction was observed between FtsZ and SulA, a component of the SOS response, and the interacting regions were mapped to their conserved domains. This interaction was reduced by mutations in sulA and by most mutations in ftsZ that make cell refractory to sulA. No interaction was detected between FtsZ and MinCD, an inhibitory component of the site selection system. However, interactions were observed among various members of the Min system, and MinE was found to reduce the interaction between MinC and MinD. The implications of these findings for cell division are discussed.  相似文献   

10.
Escherichia coli lon mutants are sensitive to UV light and other DNA-damaging agents. This sensitivity is due to the loss of the lon-encoded ATP-dependent proteolytic activity which results in increased stability of the cell division inhibitor SulA. Introduction of the multicopy plasmid pZAQ containing the ftsZ gene, which is known to increase the level of FtsZ, suppressed the sensitivity of lon mutants to the DNA-damaging agents UV and nitrofurantoin. Alterations of pZAQ which reduced the expression of ftsZ reduced the ability of this plasmid to suppress the UV sensitivity. Examination of the kinetics of cell division revealed that pZAQ did not suppress the transient filamentation seen after exposure to UV, but did suppress the long-term inhibition that is normally observed. lon strains carrying pZAQ could stably maintain a multicopy plasmid carrying sulA (pBS2), which cannot otherwise be introduced into lon mutants. In addition, the increased temperature sensitivity of lexA(Ts) strains containing pBS2 was suppressed by pZAQ. These results suggest that SulA inhibits cell division by inhibiting FtsZ and that this interaction is stoichiometric.  相似文献   

11.
A Dopazo  A Tormo  M Aldea    M Vicente 《Journal of bacteriology》1987,169(4):1772-1776
The inhibition of cell division caused by induction of the SOS pathway in Escherichia coli structurally blocks septation, as deduced from two sets of results. Potential septation sites active at the time of SOS induction became inactivated, while those initiated during the following doubling time were active. Penicillin resistance increased in wild-type UV light-irradiated cells, a behavior similar to that observed in mutants in which structural blocks were introduced by inactivation of FtsA. Potential septation sites that have been structurally blocked by either the SOS division inhibitor, furazlocillin inhibition of PBP3, or inactivation of a TER pathway component, FtsA3, could be reactivated one doubling time after removal of the inhibitory agent in the presence of an active lon gene product. Reactivation of potential septation sites blocked by the presence of an inactivated FtsA3 was significantly lower when the lon protease was not active, suggesting that Lon plays a role in the removal of inactivated TER pathway products from the blocked potential septation sites.  相似文献   

12.
13.
The ftsZ (sulB) gene of Escherichia coli codes for a 40,000-dalton protein that carries out a key step in the cell division pathway. The presence of an ftsZ gene protein in other bacterial species was examined by a combination of Southern blot and Western blot analyses. Southern blot analysis of genomic restriction digests revealed that many bacteria, including species from six members of the family Enterobacteriaceae and from Pseudomonas aeruginosa and Agrobacterium tumefaciens, contained sequences which hybridized with an E. coli ftsZ probe. Genomic DNA from more distantly related bacteria, including Bacillus subtilis, Branhamella catarrhalis, Micrococcus luteus, and Staphylococcus aureus, did not hybridize under minimally stringent conditions. Western blot analysis, with anti-E. coli FtsZ antiserum, revealed that all bacterial species examined contained a major immunoreactive band. Several of the Enterobacteriaceae were transformed with a multicopy plasmid encoding the E. coli ftsZ gene. These transformed strains, Shigella sonnei, Salmonella typhimurium, Klebsiella pneumoniae, and Enterobacter aerogenes, were shown to overproduce the FtsZ protein and to produce minicells. Analysis of [35S]methionine-labeled minicells revealed that the plasmid-encoded gene products were the major labeled species. This demonstrated that the E. coli ftsZ gene could function in other bacterial species to induce minicells and that these minicells could be used to analyze plasmid-endoced gene products.  相似文献   

14.
Transcription of the sulA gene and repression by LexA   总被引:21,自引:0,他引:21  
  相似文献   

15.
16.
The recA432 mutant allele was isolated (T. Kato and Y. Shinoura, Mol. Gen. Genet. 156:121-131, 1977) by virtue of its defect in cellular mutagenesis (Mut-) and its hypersensitivity to damage by UV irradiation (UVs), which were phenotypes expected for a recA mutant. However, we found that in a different genetic background (lexA51 sulA211 uvrB+), recA432 mutants expressed certain mutant phenotypes but not the Mut- and UVs phenotypes (D.G. Ennis, N. Ossanna, and D.W. Mount, J. Bacteriol. 171:2533-2541, 1989). We present several lines of evidence that these differences resulted from the sulA genotype of the cell and that the apparent UVs and Mut- phenotypes of the sulA+ derivatives resulted from lethal filamentation of induced cells because of persistent derepression of sulA. First, transduction of sulA(Def) mutations into the recA432 strains restored cellular mutagenesis and resistance to UV. Second, recA432 sulA+ strains underwent filamentous death following SOS-inducing treatments. Third, cleavage of LexA repressor in a recA432 strain continued at a rapid rate long after UV induction, at a time when cleavage of the repressor in the recA+ parental strain had substantially declined. Fourth, we confirmed that a single mutation (recA432) conferring both the UVs and Mut- phenotypes mapped to the recA gene. These findings indicate that the RecA432 mutant protein is defective in making the transition back to the deactivated state following SOS induction; thus, the SOS-induced state of recA432 mutants is prolonged and can account for an excess of SulA protein, leading to filamentation. These results are discussed in the context of molecular models for RecA activation for LexA and UmuD cleavage and their roles in the control of mutagenesis and cell division in the SOS response.  相似文献   

17.
We show that the 53-nucleotide RNA molecule encoded by gene dicF blocks cell division in Escherichia coli by inhibiting the translation of ftsZ mRNA. Such a role for dicF had been predicted on the basis of the complementarity of DicF RNA with the ribosome-binding region of the ftsZ mRNA. An analysis of ftsZ expression at its chromosomal locus, and of an ftsZ-lacZ translational fusion controlled by promoters ftsZ1p and ftsZ2p only, indicates that ftsZ is not autoregulated. Partial inhibition of FtsZ synthesis leads to increased cell size. However, the number of FtsZ molecules per cell can be reduced threefold without affecting the division rate significantly. Our results suggest that septation is not triggered by a fixed number of newly synthesized FtsZ molecules per cell.  相似文献   

18.
The ftsZ gene encodes an essential cell division protein that specifically localizes to the septum of dividing cells. In this study we characterized the effects of the ftsZ2(Rsa) mutation on cell physiology. We found that this mutation caused an altered cell morphology that included minicell formation and an increased average cell length. In addition, this mutation caused a temperature-dependent effect on cell lysis. During this investigation we fortuitously isolated a novel temperature-sensitive ftsZ mutation that consisted of a 6-codon insertion near the 5' end of the gene. This mutation, designated ftsZ26(Ts), caused an altered polar morphology at the permissive temperature and blocked cell division at the nonpermissive temperature. The altered polar morphology resulted from cell division and correlated with an altered geometry of the FtsZ ring. An intragenic cold-sensitive suppressor of ftsZ26(Ts) that caused cell lysis at the nonpermissive temperature was isolated. These results support the hypothesis that the FtsZ ring determines the division site and interacts with the septal biosynthetic machinery.  相似文献   

19.
A gene function carried by a plasmid, causing arrest of cell division in Escherichia coli, has been identified as the product of a short open reading frame of the prophage Rac, previously designated orfE, expressed only under conditions of prophage induction. Because Rac carries a killing function expressed under conditions of zygotic induction, an orfE-defective Rac+ strain was constructed. This strain had lost the killing function, indicating that orfE is kil. Division inhibition by kil was specifically relieved by overexpression of essential division gene ftsZ. The kil gene product acts independently of the min operon, and its effects are increased in conditions of high cyclic AMP (cAMP) receptor protein-cAMP complex levels in the cell. Furthermore, at high levels of expression, kil product distorts the rod shape of the cells. These features distinguish kil-encoded protein from the inhibitory product of gene dicB, which occupies a similar genetic location in Kim (Qin), another defective prophage of Escherichia coli.  相似文献   

20.
The role of cyclic AMP (cAMP) in the cell cycle of Escherichia coli K-12 was studied in three mutant strains. One was KI1812, in which the cya promoter is replaced by the lacUV5 promoter. In KI1812, isopropyl-beta-D-thiogalactopyranoside induced the synthesis of cya mRNA, and at the same time cell division was inhibited and short filaments containing multiple nuclei were formed. The other strains were constructed as double mutants (NC6707 cya sulB [ftsZ(Ts)] and TR3318 crp sulB [ftsZ(Ts)]). In both double mutants, filamentation was repressed at 42 degrees C, but it was induced again by addition of cAMP in strain NC6707 and introduction of pHA7 containing wild-type crp in TR3318. These results indicate that lateral wall synthesis in the E. coli cell cycle is triggered by the cAMP-cAMP receptor protein complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号