首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report procedures to allow incorporation and detection of 5-ethynyl-2'-deoxyuridine (EdU) in fission yeast, a thymidine analogue which has some technical advantages over use of bromodeoxyuridine. Low concentrations of EdU (1 μM) are sufficient to allow detection of incorporation in cells expressing thymidine kinase and human equilibrative nucleoside transporter 1 (hENT1). However EdU is toxic and activates the rad3-dependent checkpoint, resulting in cell cycle arrest, potentially limiting its applications for procedures which require labelling over more than one cell cycle. Limited DNA synthesis, when elongation is largely blocked by hydroxyurea, can be readily detected by EdU incorporation using fluorescence microscopy. Thus EdU should be useful for detecting early stages of S phase, or DNA synthesis associated with DNA repair and recombination.  相似文献   

2.
Fluoropyrimidines are useful anticancer agents and the compound 5-fluoro-2'-deoxyuridine (FdUrd) plays an important role in chemotherapy of colon cancers. Several nucleoside analogs, such as 3'-azido-2',3'-dideoxythymidine (AZT) and 2',3'-dideoxycytidine (ddC), can be incorporated into and cause depletion of mitochondrial DNA (mtDNA). These drugs are known to cause mitochondrial toxicity after prolonged treatment in patients. In this study we demonstrate that FdUrd reduces the mtDNA content and the expression level of the mtDNA encoded cytochrome c oxidase (COX II) in a CEM T-lymphoblastic cell line.  相似文献   

3.
5-Fluoro-2'-deoxyuridine is incorporated into DNA of mouse breast tumour in vivo. The incorporation is inhibited by thymidine. Part of the fluorodeoxyuridine is cleaved to fluorouracil and is incorporated into RNA. This incorporation is enhanced by thymidine. The result suggests that the major mechanism of action of the fluorouracil is due to its incorporation into RNA.  相似文献   

4.
5-Ethyl-2'-deoxyuridine (EDU) is a potent and selective inhibitor of the replication of herpes simplex virus type 1 (HSV-1) and 2 (HSV-2), which is currently being pursued for the topical treatment of HSV-1 and HSV-2 infections in humans. Using [4-14C]EDU as the radiolabeled analogue of EDU, it was ascertained that, at antivirally active doses, EDU is phosphorylated to a much greater extent by HSV-infected Vero cells than by mock-infected cells. Within the HSV-1-infected cells, EDU was incorporated to a much greater extent into viral DNA than cellular DNA. Using varying doses of EDU, a close correlation was found between the incorporation of EDU into viral DNA, the inhibition of viral DNA synthesis, and the inhibition of virus yield. It is postulated that the selectivity of EDU as an antiviral agent depends on both its preferential phosphorylation by the virus-infected cell and its preferential incorporation into viral DNA. The latter than results in a suppression of viral DNA synthesis and, hence, shutoff of viral progeny formation.  相似文献   

5.
6.
5-Carboxy-2'-deoxyuridine is a methyl oxidation product of thymidine. It can be formed by the menadione-mediated photosensitization of thymidine in aerated aqueous solution. Here in we present a new four-step synthesis of the 5-carboxy-2'-deoxyuridine phosphoramidite building block based on the alkaline hydrolysis of 5-trifluoromethyl-2'-deoxyuridine. The phosphoramidite derivative has been incorporated at defined sites into oligonucleotides using the solid phase synthesis approach.  相似文献   

7.
Isopycnic centrifugation in CsCl gradients was used to quantify the incorporation of 5-iodo-5'-amino-2',5'-dideoxyuridine and 5-iodo-2'-deoxyuridine into herpes simplex virus type 1 DNA. A parallelism between the degree of incorporation into viral DNA and the inhibition of herpes simplex virus type I replication was found for both thymidine analogs. A concentration of 5-iodo-5'-amino-2',5'-dideoxyuridine approximately 100 times greater than 5-iodo-2'-deoxyuridine was required to achieve similar levels of antiviral activity. However, the inhibitory effects of these compounds are similar when compared with respect to the percent of substitution for thymidine in herpes simplex virus type I DNA. Damage to the viral DNA, as indicated by the presence of single or double-stranded breaks, was assessed by centrifugation in alkaline and neutral sucrose gradients. The incorporation of 5-iodo-5'-amino-2',5'-dideoxyuridine into herpes simplex virus type I DNA produced single and, to a lesser extent, double-stranded breaks in a dose-dependent manner. 5-Iodo-2'-deoxyuridine did not, however, induced DNA breakage. These data indicate that the additional presence of a phosphoramidate bond in the DNA produced the extensive damage detected under these conditions, but that such damage is not required for antiviral activity.  相似文献   

8.
The 5-bromo-2'-deoxyuridine (BrdU) labeling of cells followed by antibody staining has been the standard method for direct measurement of cells in the S-phase. Described is an improved method for the detection of S-phase cell cycle progression based upon the application of click chemistry, the copper(I)-catalyzed variant of the Huisgen [3+2] cycloaddition between a terminal alkyne and an azide. 5-ethynyl-2'-deoxyuridine (EdU) is a nucleoside analog of thymidine that is incorporated into DNA during active DNA synthesis, just like BrdU. While the BrdU assay requires harsh chemical or enzymatic disruption of helical DNA structure to allow for direct measurement of cells in the S-phase by the anti-BrdU antibody, the EdU method does not. Elimination of this requirement results in the preservation of helical DNA structure and other cell surface epitopes, decreased assay time, and increased reproducibility.  相似文献   

9.
The action of 5-trifluoromethyl-2'-deoxyuridine (CF3dUrd) on DNA synthesis was investigated in vitro assay systems with purified DNA polymerases. CF3dUrd was incorporated into the DNA of mammalian cells in culture. We studied the incorporation of CF3dUrd 5'-triphosphate (CF3dUTP) into DNA and effect of CF3dUrd residue on DNA synthesis. Therefore, we synthesized oligonucleotides that allow site specific introduction of a CF3dUrd residue into a synthetic DNA oligonucleotide. After CF3dUTP incorporation, the primer was extended for human DNA polymerase alpha (pol. alpha). When CF3dUrd residue was located at an internucleotide site in the template, however, pol. alpha was exhibited a strong arrest band one nucleotide after the CF3dUrd residue site, and Escherichia coli polymerase I (Klenow fragment) also exhibited a weaker arrest band one nucleotide before the CF3dUrd residue. These results suggested that a mechanism of antitumor activity of CF3dUrd is inhibition of DNA replication.  相似文献   

10.
J Ellwart  P D?rmer 《Cytometry》1985,6(6):513-520
The purpose of this study was to improve the application of bromodeoxyuridine (BrdUrd) for the flow cytometric analysis of cell kinetics. In order to obtain a quantitative measure of the DNA synthesis rate (or the number of divided cells), BrdUrd should replace thymidine (dThd) completely in the newly synthesized DNA strands. The de novo synthesis of dThd monophosphate competing with BrdUrd incorporation was stopped by fluorodeoxyuridine (FdUrd). Cells of a human leukemic cell line (REH) were exposed to BrdUrd for either 20 min, 8 h, or 24 h. Bromodeoxyuridine incorporation was determined by a monoclonal antibody as well as by the BrdUrd/Hoechst (H) technique. Counterstaining of the DNA was performed with propidium iodide or ethidium bromide. DNA fluorescence was measured in both techniques with a two-parameter flow cytometer, the histograms being analyzed by computer. It was found that FdUrd is required in the BrdUrd/H technique for replacement of dThd at low BrdUrd concentrations and long incubation times. With short incubation periods, as used for detection by the monoclonal anti-BrdUrd antibody, FdUrd increases the incorporated BrdUrd amount when BrdUrd concentrations of 10 microM or less are applied.  相似文献   

11.
E-5-(2-Bromovinyl)-2'-deoxyuridine (BrvdUrd) produced a dose-dependent shift in the density of herpes simplex virus type 1 (HSV-1) DNA at concentrations which yielded potent inhibition of virus replication in cultured Vero cells. Although the density of cellular DNA was not altered by these concentrations of BrvdUrd, incorporation of this analogue into cellular DNA of HSV-1-infected cells has been previously observed in this laboratory. The degree of inhibition correlated with the amount of BrvdUrd substituted for thymidine in HSV-1 DNA. BrvdUrd-substituted DNA was more labile as determined by a dose-dependent increase in single strand breaks when examined by centrifugation in alkaline sucrose gradients. Thus, the potent antiviral action of BrvdUrd observed in cell culture correlates not only with its incorporation into HSV-1 DNA but also with an altered stability of this DNA.  相似文献   

12.
DNA intercalating agents have been found to produce protein-associated DNA strand breaks in mammalian cells. As a first step towards a subcellular system for the study of this reaction, we demonstrate that the reaction can take place in isolated cell nuclei. Ellipticine induces in these nuclei DNA strand breaks and stable DNA-protein complexes. Complexes and breaks are present in equivalent amounts. DNA breaks are revealed only if protein-mediated DNA adsorption to filters is abolished. These findings make it unlikely that similar effects observed in cells in culture after treatment with intercalating agents are caused by metabolically activated drugs.  相似文献   

13.
14.
15.
Template-directed DNA photoligation has been applied to a method to construct heat-resistant two-dimensional (2D) DNA arrays that can work as scaffolds in bottom-up assembly of functional biomolecules and nano-electronic components. DNA double-crossover AB-staggered (DXAB) tiles were covalently connected by enzyme-free template-directed photoligation, which enables a specific ligation reaction in an extremely tight space and under buffer conditions where no enzymes work efficiently. DNA nanostructures created by self-assembly of the DXAB tiles before and after photoligation have been visualized by high-resolution, tapping mode atomic force microscopy in buffer. The improvement of the heat tolerance of 2D DNA arrays was confirmed by heating and visualizing the DNA nanostructures. The heat-resistant DNA arrays may expand the potential of DNA as functional materials in biotechnology and nanotechnology.  相似文献   

16.
In an attempt to synthesize DNA containing 2'-deoxy-5-(trifluoromethyl)uridine (1) using previously published protocols, we found that the trifluoromethyl group converted into a cyano group, resulting in DNA containing 5-cyano-2'-deoxyuridine (3). We show that nucleoside 1 can be incorporated into DNA using phosphoramidite 2 in combination with acetyl-protected deoxycytidine and phenoxyacetyl-protected purine phosphoramidites. Replacing thymidine in DNA with 1 caused a slight decrease in DNA duplex stability at pH 6.9.  相似文献   

17.
18.
Recently thiolated oligonucleotides have attracted significant interest due to their ability to efficiently undergo stable bond formation with gold nanoparticles and surfaces to form DNA conjugates. In this respect we became interested in the synthesis of oligonucleotides that bear short thioalkyl functions located at the nucleobase. Here we present a strategy for the synthesis of DNA oligonucleotides that bear 5-(mercaptomethyl)-2'-deoxyuridine moieties. The building blocks were synthesized in a straightforward manner from thymidine. Only moderate changes of standard protocols for automated DNA synthesis are required for the generation of modified oligonucleotides containing the thiolated building blocks.  相似文献   

19.
We report a facile, quantitative regeneration of the thiocarbonyl group from S-alkylated 4-thio-2'-deoxyuridine residues by treatment with NaSH within oligodeoxynucleotides.  相似文献   

20.
Reductive amination of 5-formyl-3',5'-di-O-acetyl-2'-deoxyuridine with primary amines and sodium triacetoxyborohydride (NaBH(OAc)(3)) afforded novel enamine derivatives of 5,6-dihydro-2'-deoxyuridine as a result of unexpected 1,4-conjugate reduction of intermediate Schiff bases in addition to the secondary amine derivatives of 2'-deoxyuridine, typical 1,2-reduction products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号