首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-seven patients presenting features of the Prader-Willi syndrome (PWS) have been examined using cytogenetic and molecular techniques. Clinical evaluation showed that 29 of these patients fulfilled diagnostic criteria for PWS. A deletion of the 15q11.2-q12 region could be identified molecularly in 21 of these cases, including several cases where the cytogenetics results were inconclusive. One clinically typical patient is deleted at only two of five loci normally included in a PWS deletion. A patient carrying a de novo 13;X translocation was not deleted for the molecular markers tested but was clinically considered to be "atypical" PWS. In addition, five cases of maternal heterodisomy and two of isodisomy for 15q11-q13 were observed. All of the eight patients who did not fulfill clinical diagnosis of PWS showed normal maternal and paternal inheritance of chromosome 15 markers; however, one of these carried a ring-15 chromosome. A comparison of clinical features between deletion patients and disomy patients shows no significant differences between the two groups. The parental ages at birth of disomic patients were significantly higher than those for deletion patients. As all typical PWS cases showed either a deletion or disomy of 15q11.2-q12, molecular examination should provide a reliable diagnostic tool. As the disomy patients do not show either any additional or more severe features than typical deletion patients do, it is likely that there is only one imprinted region on chromosome 15 (within 15q11.2-q12).  相似文献   

2.
Here we describe the genetic studies performed in 53 patients with the suspected diagnosis of Prader-Willi syndrome (PWS). PWS is characterized by neonatal hypotonia, hypogonadism, delayed psychomotor development, hyperphagia, obesity, short stature, small hands and feet, learning disabilities, and obsessive-compulsive behavior. Through the methylation analysis of the SNRPN gene, microsatellite studies of loci mapped within and outside the PWS/AS region, and fluorescence in situ hybridization (FISH) study, we confirmed the diagnosis in 35 patients: 27 with a paternal deletion, and 8 with maternal uniparental disomy (UPD). The clinical comparisons between deleted and UPD patients indicated that there were no major phenotype differences, except for a lower birth length observed in the UPD children. Our sample was composed of more girls than boys; UPD patients were diagnosed earlier than the deleted cohort (2(10/12) s. 7(9/12) years); and, in the deleted group, the boys were diagnosed earlier than the girls (5(2/12) vs. 7(8/12) years, respectively).  相似文献   

3.
About 70% of patients with Prader-Willi syndrome (PWS) and Angelman syndrome (AS) have a common interstitial de novo microdeletion encompassing paternal (PWS) or maternal (AS) loci D15S9 to D15S12. Most of the non-deletion PWS patients and a small number of non-deletion AS patients have a maternal or paternal uniparental disomy (UPD)15, respectively. Other chromosome 15 rearrangements and a few smaller atypical deletions, some of the latter being associated with an abnormal methylation pattern, are rarely found. Molecular and fluorescence in situ hybridization (FISH) analysis have both been used to diagnose PWS and AS. Here, we have evaluated, in a typical routine cytogenetic laboratory setting, the efficiency of a diagnostic strategy that starts with a FISH deletion assay using Alu-PCR (polymerase chain reaction)-amplified D15S10-positive yeast artificial chromosome (YAC) 273A2. We performed FISH in 77 patients suspected of having PWS (n = 66) or AS (n = 11) and compared the results with those from classical cytogenetics and wherever possible with those from DNA analysis. A FISH deletion was found in 16/66 patients from the PWS group and in 3/11 patients from the AS group. One example of a centromere 15 co-hybridization performed in order to exclude cryptic translocations or inversions is given. Of the PWS patients, 14 fulfilled Holm’s criteria, but two did not. DNA analysis confirmed the commmon deletion in all patients screened by the D15S63 methylation test and in restriction fragment length polymorphism dosage blots. In 3/58 non-deletion patients, other chromosomal aberrations were found. Of the non-deleted group, 27 subjects (24 PWS, 3 AS) were tested molecularly, and three patients with an uniparental methylation pattern were found in the PWS group. The other 24/27 subjects had neither a FISH deletion nor uniparental methylation, but two had other cytogenetic aberrations. Given that cytogenetic analysis is indispensable in most patients, we find that the FISH deletion assay with YAC 273A2 is an efficient first step for stepwise diagnostic testing and mutation-type analysis of patients suspected of having PWS or AS. Received: 14 November 1995  相似文献   

4.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurogenetic disorders that are caused by the loss of function of imprinted genes in 15q11-q13. In a small group of patients, the disease is due to aberrant imprinting and gene silencing. Here, we describe the molecular analysis of 51 patients with PWS and 85 patients with AS who have such a defect. Seven patients with PWS (14%) and eight patients with AS (9%) were found to have an imprinting center (IC) deletion. Sequence analysis of 32 patients with PWS and no IC deletion and 66 patients with AS and no IC deletion did not reveal any point mutation in the critical IC elements. The presence of a faint methylated band in 27% of patients with AS and no IC deletion suggests that these patients are mosaic for an imprinting defect that occurred after fertilization. In patients with AS, the imprinting defect occurred on the chromosome that was inherited from either the maternal grandfather or grandmother; however, in all informative patients with PWS and no IC deletion, the imprinting defect occurred on the chromosome inherited from the paternal grandmother. These data suggest that this imprinting defect results from a failure to erase the maternal imprint during spermatogenesis.  相似文献   

5.
Uniparental disomy has recently been recognized to cause human disorders, including Prader-Willi syndrome (PWS). We describe a particularly instructive case which raises important issues concerning the mechanisms producing uniparental disomy and whose evaluation provides evidence that trisomy may precede uniparental disomy in a fetus. Chorionic villus sampling performed for advanced maternal age revealed trisomy 15 in all direct and cultured cells, though the fetus appeared normal. Chromosome analysis of amniocytes obtained at 15 wk was normal in over 100 cells studied. The child was hypotonic at birth, and high-resolution banding failed to reveal the deletion of 15q11-13, a deletion which is found in 50%-70% of patients with PWS. Over time, typical features of PWS developed. Molecular genetic analysis using probes for chromosome 15 revealed maternal disomy. Maternal nondisjunction with fertilization of a disomic egg by a normal sperm, followed by loss of the paternal 15, is a likely cause of confined placental mosaicism and uniparental disomy in this case of PWS, and advanced maternal age may be a predisposing factor.  相似文献   

6.
Summary Prader-Willi syndrome (PWS) is a sporadic disorder in which about half of cases have a 15q12 deletion. Although a small number of cases have other rearrangements involving 15q12, the rest of the cases appear to have normal chromosomes. Clinical similarities among all these patients regardless of the karyotype strongly suggests a common etiology. To investigate the nature of this common etiology, we analyzed sister chromatid exchange (SCE) at the 15q11-13 region in 10 PWS patients with the chromosome deletion, 12 PWS patients with normal chromosomes, and 11 normal control individuals. While SCE at the q11-13 region was absent on the 15q12 deleted chromosome, the percentage of SCE on chromosome 15 at q11 was statistically higher for PWS with normal chromosomes (10.1%) compared to that for normal controls (1.9%) and the normal homologue (2.2%) in deleted patients (2=7.7982, df=2, P<0.025). The data suggest relative instability of DNA at the 15q11 region in PWS patients.  相似文献   

7.
The Prader-Willi syndrome (PWS) is a developmental disorder caused by a deficiency of paternal contributions, arising from differently sized deletions, uniparental disomy or rare imprinting mutations, in the chromosome region 15q11–q13. We studied 41 patients with suspected PWS and their parents using cytogenetic and molecular techniques. Of the 27 clinically typical PWS patients, 23 (85%) had a molecular deletion that could be classified into four size categories. Only 15 of them (71%) could be detected cytogenetically. Maternal uniparental heterodisomy was observed in four cases. The rest of the patients showed no molecular defects including rare imprinting mutations. In our experience, the use of the methylation test with the probe PW71 (D15S63), together with the probe hN4HS (SNRPN), which distinguishes between a deletion and uniparental disomy, is the method of choice for the diagnosis of PWS.  相似文献   

8.
Genetic imprinting has been implicated in the etiology of two clinically distinct but cytogenetically indistinguishable disorders--Angelman syndrome (AS) and Prader-Willi syndrome (PWS). This hypothesis is derived from two lines of evidence. First, while the molecular extents of de novo cytogenetic deletions of chromosome 15q11q13 in AS and PWS patients are the same, the deletions originate from different parental chromosomes. In AS, the deletion occurs in the maternally inherited chromosome 15, while in PWS the deletion is found in the paternally inherited chromosome 15. The second line of evidence comes from the deletion of an abnormal parental contribution of 15q11q13 in PWS patients without a cytogenetic and molecular deletion. These patients have two maternal copies and no paternal copy of 15q11q13 (maternal uniparental disomy) instead of one copy from each parent. By qualitative hybridization with chromosome 15q11q13 specific DNA markers, we have now examined DNA samples from 10 AS patients (at least seven of which are familial cases) with no cytogenetic or molecular deletion of chromosome 15q11q13. Inheritance of one maternal copy and one paternal copy of 15q11q13 was observed in each family, suggesting that paternal uniparental disomy of 15q11q13 is not responsible for expression of the AS phenotype in these patients.  相似文献   

9.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct neurodevelopmental disorders with interrelated genetic mechanisms because genomic imprinting within the chromosome 15q11–13 region affects both the PWS and the AS locus. Methylation analysis is one method of distinguishing between the maternally and paternally inherited chromosome 15. Here we present clinical and molecular data on a large series of 258 referred patients, evaluated with methylation analysis: 115 with suspected PWS and 143 with suspected AS. In these patients, the clinical phenotype was graded into three groups: classical (group 1); not classical but possible (group 2); not classical and unlikely (group 3). For PWS, a fourth group consisted of hypotonic babies. DNA methylation analysis confirmed the diagnosis of PWS in 30 patients (26%) and AS in 28 patients (20%). For 21 PWS patients the mechanism was established: 15 had deletions, 4 had uniparental disomy (UPD) and 2 a presumed imprinting defect. Clinically all those with an abnormal methylation pattern had the classical phenotype and none of those with a normal methylation pattern had classical PWS. For 23 AS patients in whom a mechanism was established, 17 had a deletion, 3 had UPD and 3 had a presumed imprinting defect. There was greater clinical overlap in AS, with 26 classical AS patients having a normal methylation pattern while an abnormal methylation pattern was seen in one patient from group 2. In addition, there were a further 40 patients with a normal methylation pattern in whom AS was still a possible diagnosis. Our conclusion is that methylation analysis provides an excellent screening test for both syndromes, providing ∼99% diagnosis for PWS and for AS, a 75% diagnostic rate, supplemented for the remaining 25% with an essential basic starting point to further investigations. Received: 10 February 1998 / Accepted: 7 July 1998  相似文献   

10.
D15S63 is one of the loci, on chromosome 15q11-q13, that exhibit parent-of-origin dependent methylation and that is commonly used in the diagnosis of Prader-Willi or Angelman syndromes (PWS/AS). A 28-kb deletion spanning the D15S63 locus was identified in five unrelated patients; in each of them the deletion was inherited from a normal parent. Three of the five families segregating the deletion were reported to be of Jewish Ashkenazi ancestry, and in the other two families the ancestral origin was unknown. To determine whether the 28-kb deletion is a benign variant, we screened for the deletion in 137 unselected Ashkenazi individuals and in 268 patients who were referred for molecular diagnosis of PWS/AS, of whom 89 were Ashkenazi and 47 were of mixed origin (Ashkenazi and non-Ashkenazi Jews). In the control group, three individuals were carriers of the deletion; among the patients, three were carriers, all of whom were Ashkenazi Jews. There was no significant difference between the control group and the Ashkenazi patients, indicating that the deletion is not a cause of PWS- and AS-like syndromes. The frequency of the 28-kb deletion in the Ashkenazi population was 1/75. Since methylation analysis at the D15S63 locus may lead to misdiagnosis, we suggest the use of SNRPN, either in a PCR-based assay or as a probe in Southern hybridization, as the method of choice in the diagnosis of PWS/AS.  相似文献   

11.
Prader-Willi syndrome (PWS) is a genetic disorder characterized by dysmorphic features, obesity, hypogonadism, hypotonia and mental retardation. Obesity has been linked to insulin resistance and the latter has also been associated with premature adrenarche. Since up to date a controlled study to investigate adrenarche and its hormonal regulation was lacking in PWS, our aim was to assess whether prepubertal PWS patients develop premature adrenarche and its relationship with markers of insulin sensitivity. Fourteen prepubertal children with PWS (6 M, 8 F) and 10 non-syndromal simple obese matched controls (5 M, 5 F) participated (mean age: 7.62 +/- 1.84 years). A fasting blood sample was obtained for adrenal and ovarian androgens, sex hormone binding globulin, insulin-like growth factor-I (IGF-I), insulin-like growth factor binding protein-1, leptin, adiponectin and a lipid profile. Thereafter an oral glucose tolerance test was performed. PWS patients were smaller at birth and a higher proportion displayed premature pubarche. No differences were found in testosterone, androstenedione, sex hormone binding globulin, free androgen index, homeostatic model assessment-IR, 2-hour insulin, leptin or adiponectin levels. 17-hydroxyprogesterone and DHEAS levels however, were significantly higher in PWS. IGF-I levels were significantly lower in PWS and correlated significantly with height SDS (p < 0.05). In conclusion, a higher proportion of premature adrenarche in our PW patients was observed, which was not explained by differences in insulin sensitivity or plasma levels of adipokines and IGF-I.  相似文献   

12.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis.  相似文献   

13.
In Prader-Willi syndrome (PWS) growth hormone therapy (GHT) improves height, body composition, agility and muscular strength. In such patients it is necessary to consider the potential diabetogenic effect of GHT, since they tend to develop type 2 diabetes, particularly after the pubertal age. The aim of our study was to investigate the effects of GHT on glucose and insulin homeostasis in PWS children. An oral glucose tolerance test (OGTT) was performed in 24 prepubertal PWS children (15 male, 9 female, age: 5.8 +/- 2.8 years), 16 were obese (group A) and 8 had normal weight (group B), before and after 2.7 +/- 1.3 years GHT (0.22 +/- 0.03 mg/kg/week) and, only at baseline, in 35 prepubertal children with simple obesity (19 male, 16 female) (group C). Fasting glucose and insulin, glucose tolerance, insulin sensitivity index (ISI), homeostasis model assessment of insulin resistance (HOMA-IR), quick insulin check index (QUICKI), area under the curves (AUC) of glucose and insulin were estimated. At the start of GHT, all PWS children were normoglycaemic and normotolerant but two developed impaired glucose tolerance after 2.2 and 1.9 years of therapy, respectively. At baseline, group A showed lower fasting insulin levels, HOMA-IR and AUC of insulin, higher ISI, QUICKI and AUC of glucose than group C. Comparing groups A and B, AUC of insulin was higher and ISI lower in group A. During GHT, a significant increase of fasting insulin and glucose, a worsening of insulin resistance (HOMA-IR) and insulin sensitivity (QUICKI) was found only in group A while ISI did not change. The AUC of glucose decreased in both groups instead AUC of insulin did not change. BMI-SDS decreased in group A and increased in group B. The increased insulin resistance and decreased insulin sensitivity in obese PWS patients, as well as the occurrence of impaired glucose tolerance during GHT, suggest that a close monitoring of glucose and insulin homeostasis is mandatory, especially in treated obese PWS children.  相似文献   

14.
Hypopigmentation in the Prader-Willi syndrome.   总被引:8,自引:4,他引:4       下载免费PDF全文
Cutaneous and ocular pigmentation were evaluated in 29 individuals with the Prader-Willi syndrome (PWS). Criteria for hypopigmentation included the presence of type I or II skin, the lightest skin type in the family by history, and iris translucency on globe transillumination. On the basis of these criteria, 48% of the PWS individuals were hypopigmented. The presence of hypopigmentation correlated with a small interstitial deletion on the proximal long arm of chromosome 15; however, this deletion was also found in individuals who did not meet the full criteria for hypopigmentation. Hairbulb tyrosinase activity and glutathione content, as well as urine cysteinyldopa excretion, were low in PWS individuals with and without hypopigmentation and did not separate these two groups. We conclude that hypopigmentation is found in a significant proportion of individuals with PWS and that the hypopigmentation may be associated with a deletion of the long arm of chromosome 15. The mechanism for the hypopigmentation is unknown.  相似文献   

15.
Prader-Willi syndrome (PWS) is a neurobehavioral disorder caused by deletions in the 15q11-q13 region, by maternal uniparental disomy of chromosome 15 or by imprinting defects. Structural rearrangements of chromosome 15 have been described in about 5% of the patients with typical or atypical PWS phenotype. An 8-year-old boy with a clinical diagnosis of PWS, severe neurodevelopmental delay, absence of speech and mental retardation was studied by cytogenetic and molecular techniques, and an unbalanced de novo karyotype 45,XY,der(4)t(4;15)(q35;q14),-15 was detected after GTG-banding. The patient was diagnosed by SNURF-SNRPN exon 1 methylation assay, and the extent of the deletions on chromosomes 4 and 15 was investigated by microsatellite analysis of markers located in 4qter and 15q13-q14 regions. The deletion of chromosome 4q was distal to D4S1652, and that of chromosome 15 was located between D15S1043 and D15S1010. Our patient's severely affected phenotype could be due to the extent of the deletion, larger than usually seen in PWS patients, although the unbalance of the derivative chromosome 4 cannot be ruled out as another possible cause. The breakpoint was located in the subtelomeric region, very close to the telomere, a region that has been described as having the lowest gene concentrations in the human genome.  相似文献   

16.
AIM: To investigate fasting and postprandial adiponectin levels in PWS patients as compared to obese and lean subjects and whether they could contribute to the pathogenesis of obesity in this syndrome. METHODS: We studied 7 patients with PWS, 16 obese patients and 42 lean subjects for the fasting study. From this group, we evaluated 7 patients with PWS, 7 age-sex-BMI-matched obese non-PWS patients and 7 age-sex-matched lean subjects before and after the administration of 3,139.5 kJ (750 kcal) of a standard liquid meal (53.2% carbohydrate, 30% fat, 16.7% protein) after an overnight fast. Blood samples were obtained every 15 min for the first hour and every 30 min thereafter until 6 h. Adiponectin, IGF-I, glucose, triglycerides, cholesterol, and insulin were measured. RESULTS: Fasting plasma adiponectin levels were lower in PWS than in lean subjects (5.24+/-2.56 vs. 8.28+/-4.63 microg/ml, p=0.041) but higher than in obese patients (4.01+/-1.27 microg/ml, p=0.047). After the meal, adiponectin concentrations mildly decreased in PWS at time point 240 min, while in obese and lean subjects no changes were observed. However, 6-hour postprandial AUC for adiponectin was similar in all three groups. CONCLUSION: Fasting adiponectin levels are low in PWS, but they are so mildly modulated postprandially that these changes do not seem significant for the pathogenesis of obesity in this syndrome.  相似文献   

17.
Mutations at the mouse pink-eyed dilution locus, p, cause hypopigmentation. We have cloned the mouse p gene cDNA and the cDNA of its human counterpart, P. The region of mouse chromosome 7 containing the p locus is syntenic with human chromosome 15q11-q13, a region associated with Prader-Willi syndrome (PWS) and Angelman syndrome (AS), both of which involve profound imprinting effects. PWS patients lack sequences of paternal origin from 15q, whereas AS patients lack a maternal copy of an essential region from 15q. However, the critical regions for these syndromes are much smaller than the chromosomal region commonly deleted that often includes the P gene. Hypopigmentation in PWS and AS patients is correlated with deletions of one copy of the human P gene that is highly homologous with its mouse counterpart. A subset of PWS and AS patients also have OCA2. These patients lack one copy of the P gene in the context of a PWS or AS deletion, with a mutation in the remaining chromosomal homologue of the P gene. Mutations in both homologues of the P gene of OCA2 patients who do not have PWS or AS have also been detected.  相似文献   

18.
Prader-Willi syndrome (PWS) is a contiguous gene syndrome caused by the loss of function of genes situated within the 15q11-q13 region. The loss of function arises as a result of paternally derived mutations complemented by maternal imprinting. The molecular events underlying the disorder include interstitial deletions (70%), uniparental disomy (UPD) (25%), imprinting center defects (<5%), and rarely chromosomal translocations (<1%). The standard diagnosis of PWS is based on clinical observations and genetic investigations involving DNA methylation studies and fluorescence in situ hybridization (FISH) analysis. The absence of a paternal methylation pattern within 15q11 is sufficient for a diagnosis of PWS, and FISH analyses are used for the additional categorization of patients as either deletion or nondeletion. The main limitation of these investigations is that they neither determine the size of the molecular deletions nor permit detection of individuals with microdeletions in the PWS imprinting center that regulates imprinting in this region. We have designed and implemented a real-time PCR assay using genomic DNA and SYBR green I intercalating dye to determine the size of the chromosomal deletions in patients with PWS. This has been successfully performed on genomic DNA isolated from both peripheral blood leukocytes and buccal epithelial cells. Through this assay, the two common deletion classes in PWS were observed, and all results were 100% concordant with previous FISH assays performed on the same patients.  相似文献   

19.
《Epigenetics》2013,8(11):1540-1556
Reduced representation bisulfite sequencing (RRBS) was used to analyze DNA methylation patterns across the mouse brain genome in mice carrying a deletion of the Prader-Willi syndrome imprinting center (PWS-IC) on either the maternally- or paternally-inherited chromosome. Within the ~3.7 Mb imprinted Angelman/Prader-Willi syndrome (AS/PWS) domain, 254 CpG sites were interrogated for changes in methylation due to PWS-IC deletion. Paternally-inherited deletion of the PWS-IC increased methylation levels ~2-fold at each CpG site (compared to wild-type controls) at differentially methylated regions (DMRs) associated with 5′ CpG island promoters of paternally-expressed genes; these methylation changes extended, to a variable degree, into the adjacent CpG island shores. Maternal PWS-IC deletion yielded little or no changes in methylation at these DMRs, and methylation of CpG sites outside of promoter DMRs also was unchanged upon maternal or paternal PWS-IC deletion. Using stringent ascertainment criteria, ~750,000 additional CpG sites were also interrogated across the entire mouse genome. This analysis identified 26 loci outside of the imprinted AS/PWS domain showing altered DNA methylation levels of ≥25% upon PWS-IC deletion. Curiously, altered methylation at 9 of these loci was a consequence of maternal PWS-IC deletion (maternal PWS-IC deletion by itself is not known to be associated with a phenotype in either humans or mice), and 10 of these loci exhibited the same changes in methylation irrespective of the parental origin of the PWS-IC deletion. These results suggest that the PWS-IC may affect DNA methylation at these loci by directly interacting with them, or may affect methylation at these loci through indirect downstream effects due to PWS-IC deletion. They further suggest the PWS-IC may have a previously uncharacterized function outside of the imprinted AS/PWS domain.  相似文献   

20.
Reduced representation bisulfite sequencing (RRBS) was used to analyze DNA methylation patterns across the mouse brain genome in mice carrying a deletion of the Prader-Willi syndrome imprinting center (PWS-IC) on either the maternally- or paternally-inherited chromosome. Within the ∼3.7 Mb imprinted Angelman/Prader-Willi syndrome (AS/PWS) domain, 254 CpG sites were interrogated for changes in methylation due to PWS-IC deletion. Paternally-inherited deletion of the PWS-IC increased methylation levels ∼2-fold at each CpG site (compared to wild-type controls) at differentially methylated regions (DMRs) associated with 5′ CpG island promoters of paternally-expressed genes; these methylation changes extended, to a variable degree, into the adjacent CpG island shores. Maternal PWS-IC deletion yielded little or no changes in methylation at these DMRs, and methylation of CpG sites outside of promoter DMRs also was unchanged upon maternal or paternal PWS-IC deletion. Using stringent ascertainment criteria, ∼750,000 additional CpG sites were also interrogated across the entire mouse genome. This analysis identified 26 loci outside of the imprinted AS/PWS domain showing altered DNA methylation levels of ≥25% upon PWS-IC deletion. Curiously, altered methylation at 9 of these loci was a consequence of maternal PWS-IC deletion (maternal PWS-IC deletion by itself is not known to be associated with a phenotype in either humans or mice), and 10 of these loci exhibited the same changes in methylation irrespective of the parental origin of the PWS-IC deletion. These results suggest that the PWS-IC may affect DNA methylation at these loci by directly interacting with them, or may affect methylation at these loci through indirect downstream effects due to PWS-IC deletion. They further suggest the PWS-IC may have a previously uncharacterized function outside of the imprinted AS/PWS domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号