首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute lung injury (ALI) by smoke inhalation with subsequent pneumonia and sepsis represents a major cause of morbidity and mortality in burn patients. The aim of the present study was to develop a murine model of ALI and sepsis to enhance the knowledge of mechanistic aspects and pathophysiological changes in patients with these injuries. In deeply anesthetized female C57BL/6 mice, injury was induced by four sets of cotton smoke using an inhalation chamber. Afterward, live Pseudomonas aeruginosa (3.2 × 107 colony-forming units) was administered intranasally. The indicated dose of bacteria was determined based on the results of a dose-response study (n = 47). The following study groups were monitored for survival over 96 h: (1) sham injury group, (2) only smoke inhalation group, (3) only bacteria group, and (4) smoke inhalation plus bacteria group. Each group included 10 mice. The survival rates were 100%, 90%, 30%, and 10%, respectively. The double hit injury was associated with excessive releases of pro-inflammatory cytokines in the plasma, and enhanced neutrophil accumulation, increased lipid peroxidation, and excessive formation of reactive nitrogen species in the lung. In mice receiving only smoke inhalation injury, no systemic cytokine release and increased lung tissue lipid peroxidation were observed. However, smoke alone significantly increased neutrophil accumulation and formation of reactive nitrogen species in lung tissue. In conclusion, bacterial pneumonia is predominantly responsible for mortality and morbidity in this novel murine model of smoke inhalation and pulmonary sepsis. Reactive oxygen and nitrogen species mediate the severity of lung injury.  相似文献   

2.
During acute lung injury, nitric oxide (NO) exerts cytotoxic effects by reacting with superoxide radicals, yielding the reactive nitrogen species peroxynitrite (ONOO(-)). ONOO(-) exerts cytotoxic effects, among others, by nitrating/nitrosating proteins and lipids, by activating the nuclear repair enzyme poly(ADP-ribose) polymerase and inducing VEGF. Here we tested the effect of the ONOO(-) decomposition catalyst INO-4885 on the development of lung injury in chronically instrumented sheep with combined burn and smoke inhalation injury. The animals were randomized to a sham-injured group (n = 7), an injured control group [48 breaths of cotton smoke, 3rd-degree burn of 40% total body surface area (n = 7)], or an injured group treated with INO-4885 (n = 6). All sheep were mechanically ventilated and fluid-resuscitated according to the Parkland formula. The injury-related increases in the abundance of 3-nitrotyrosine, a marker of protein nitration by ONOO(-), were prevented by INO-4885, providing evidence for the neutralization of ONOO(-) action by the compound. Burn and smoke injury induced a significant drop in arterial Po(2)-to-inspired O(2) fraction ratio and significant increases in pulmonary shunt fraction, lung lymph flow, lung wet-to-dry weight ratio, and ventilatory pressures; all these changes were significantly attenuated by INO-4885 treatment. In addition, the increases in IL-8, VEGF, and poly(ADP-ribose) in lung tissue were significantly attenuated by the ONOO(-) decomposition catalyst. In conclusion, the current study suggests that ONOO(-) plays a crucial role in the pathogenesis of pulmonary microvascular hyperpermeability and pulmonary dysfunction following burn and smoke inhalation injury in sheep. Administration of an ONOO(-) decomposition catalyst may represent a potential treatment option for this injury.  相似文献   

3.
We investigated the role of the nuclear enzyme poly (ADP ribose) synthetase (PARS) in the pathogenesis of combined burn and smoke inhalation (burn/smoke) injury in an ovine model. Eighteen sheep were operatively prepared for chronic study. PARS inhibition was achieved by treatment with a novel and selective PARS inhibitor INO-1001. The PARS inhibitor attenuated 1) lung edema formation, 2) deterioration of gas exchange, 3) changes in airway blood flow, 4) changes in airway pressure, 5) lung histological injury, and 6) systemic vascular leakage. Lipid oxidation and plasma nitrite/nitrate (stable breakdown products of nitric oxide) levels were suppressed with the use of INO-1001. We conclude that PARS inhibition attenuates various aspects of the pathophysiological response in a clinically relevant experimental model of burn/smoke inhalation injury.  相似文献   

4.
We investigated the pathophysiological alterations seen with combined burn and smoke inhalation injuries by focusing on pulmonary vascular permeability and cardiopulmonary function compared with those seen with either burn or smoke inhalation injury alone. To estimate the effect of factors other than injury, the experiments were also performed with no injury in the same experimental setting. Lung edema was most severe in the combined injury group. Our study revealed that burn injury does not affect protein leakage from the pulmonary microvasculature, even when burn is associated with smoke inhalation injury. The severity of lung edema seen with the combined injury is mainly due to augmentation of pulmonary microvascular permeability to fluid, not to protein. Cardiac dysfunction after the combined injury consisted of at least two phases. An initial depression was mostly related to hypovolemia due to burn injury. It was improved by a large amount of fluid resuscitation. The later phase, which was indicated to be a myocardial contractile dysfunction independent of the Starling equation, seemed to be correlated with smoke inhalation injury.  相似文献   

5.
We hypothesized that the antibody neutralization of L-selectin would decrease the pulmonary abnormalities characteristic of burn and smoke inhalation injury. Three groups of sheep (n = 18) were prepared and randomized: the LAM-(1-3) group (n = 6) was injected intravenously with 1 mg/kg of leukocyte adhesion molecule (LAM)-(1-3) (mouse monoclonal antibody against L-selectin) 1 h after the injury, the control group (n = 6) was not injured or treated, and the nontreatment group (n = 6) was injured but not treated. All animals were mechanically ventilated during the 48-h experimental period. The ratio of arterial PO2 to inspired O2 fraction decreased in the LAM-(1-3) and nontreatment groups. Lung lymph flow and pulmonary microvascular permeability were elevated after injury. This elevation was significantly reduced when LAM-(1-3) was administered 1 h after injury. Nitrate/nitrite (NO(x)) amounts in plasma and lung lymph increased significantly after the combined injury. These changes were attenuated by posttreatment with LAM-(1-3). These results suggest that the changes in pulmonary transvascular fluid flux result from injury of lung endothelium by polymorphonuclear leukocytes. In conclusion, posttreatment with the antibody for L-selectin improved lung lymph flow and permeability index. L-selectin appears to be principally involved in the increased pulmonary transvascular fluid flux observed with burn/smoke insult. L-selectin may be a useful target in the treatment of acute lung injury after burn and smoke inhalation.  相似文献   

6.
目的通过观察糖皮质激素对机械通气大鼠肺组织诱导型一氧化氮合酶(iNOS)及一氧化氮(NO)表达的影响,探讨糖皮质激素对呼吸机所致肺损伤(ventilator induced lung injury,VILI)的干预作用。方法 24只雄性Wistar大鼠随机分为对照组、机械通气组、地塞米松(DXM)干预组。用逆转录-聚合酶链反应(RT-PCR)法检测肺组织iNOS mRNA表达,用免疫组织化学染色法检测肺组织iNOS蛋白表达,用硝酸还原酶法测定肺组织和血浆NO含量。结果机械通气组和DXM干预组大鼠肺组织iNOS mRNA及其蛋白表达水平,以及血浆和肺组织NO含量均明显高于对照组(P〈0.01);DXM干预组上述指标与机械通气组比较均明显降低(P〈0.01)。结论糖皮质激素可通过抑制肺组织iNOS的表达,减少NO的生成,对机械通气大鼠肺组织具有保护作用。  相似文献   

7.
Excessive production of nitric oxide (NO) by NO synthase (NOS) with subsequent formation of peroxynitrite and poly(adenosine diphosphate ribose) is critically implemented in the pathophysiology of acute lung injury and sepsis. To elucidate the roles of different isoforms of NOS, we tested the effects of non-selective NOS inhibition and neuronal NOS (nNOS)- and inducible NOS (iNOS)-gene deficiency on the pulmonary oxidative and nitrosative stress reaction in a murine sepsis model. The injury was induced by four sets of cotton smoke using an inhalation chamber and subsequent intranasal administration of live Pseudomonas aeruginosa (3.2 × 107 colony-forming units). In wild type mice, the injury was associated with excessive releases of pro-inflammatory cytokines in the plasma, enhanced neutrophil accumulation, increased lipid peroxidation, and excessive formation of reactive nitrogen species and vascular endothelial growth factor in the lung. Both nNOS- and iNOS-gene deficiency led to significantly reduced oxidative and nitrosative stress markers in the lung, but failed to significantly improve survival. Treatment with a non-selective NOS inhibitor failed to reduce the oxidative and nitrosative stress reaction to the same extent and even tended to increase mortality. In conclusion, the current study demonstrates that both nNOS and iNOS are partially responsible for the pulmonary oxidative and nitrosative stress reaction in this model. Future studies should investigate the effects of specific pharmacological inhibition of nNOS and iNOS at different time points during the disease process.  相似文献   

8.
Inducible nitric oxide synthase (iNOS) is implicated in the pathogenesis of acute respiratory distress syndrome (ARDS). ARDS treatment is frequently complicated by significant extrapulmonary comorbidity. This study was designed to clarify the role of iNOS in mediating extrapulmonary comorbidity in sheep after combined burn and smoke inhalation injuries using a potent and highly selective iNOS dimerization inhibitor, BBS-2. Twenty-two female sheep were operatively prepared. After 5 days of recovery, tracheostomy was performed under ketamine-halothane anesthesia. Sheep were given a 40% total body surface third-degree burns and insufflated with cotton smoke (48 breaths, <40 degrees C). Sheep were divided into four groups: noninjured and nontreated (sham group; n = 6), noninjured but treated with BBS-2 (sham/BBS-2 group; n = 4), injured but nontreated (control group, n = 6), and injured but treated with 100 microg.kg-1.h-1 BBS-2 (BBS-2 group; n = 6). Evaluation was in a laboratory intensive care unit setting for 48 h. The sham group had stable cardiopulmonary and systemic hemodynamics. Control animals showed multiple signs of morbidity. Decreased left ventricular stroke work index and stroke volume index with elevated left atrial pressure indicated myocardial depression. Systemic vascular leak was evidenced by robust hemoconcentration, decreased plasma oncotic pressure, and increased transvascular fluid flux into the lymphatic system. Finally, severely impaired renal function (urinary output) was associated with adverse net fluid balance. Treatment with BBS-2 prevented all these morbidities without adversely effecting cardiovascular hemodynamics such as cardiac index and mean arterial pressure. The results identify a major role for iNOS in mediating extrapulmonary comorbidity in a clinically relevant and severe trauma model and support the use of highly selective iNOS inhibitors as novel treatments in critical care medicine.  相似文献   

9.
We investigated the effects of naringin on small intestine, liver, kidney and lung recovery after ischemia/reperfusion (I/R) injury of the gut. Rats were divided randomly into four groups of eight. Group A was the sham control; group B was ischemic for 2 h; group C was ischemic for 2 h and re-perfused for 2 h (I/R); group D was treated with 50 mg/kg naringin after ischemia, then re-perfused for 2 h. Endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) expressions were detected by immunolabeling. We also measured arginase activity, amounts of nitric oxide (NO) and total protein. iNOS was increased significantly in the small intestine, liver and kidney in group C. iNOS was decreased significantly only in small intestine and lung in group D. eNOS was increased significantly in the small intestine, liver and lung in group C. eNOS was decreased in small intestine, liver and lung in group D; however, eNOS was decreased in the kidney in group C and increased in the kidney in group D. The amount of NO was decreased significantly in all tissues in group D, but arginase activity was decreased in the small intestine and lung, increased in the kidney and remained unchanged in the liver in group D. The total protein increased in the small intestine and liver in group D, but decreased significantly in the kidney and lung in group D. Naringin had significant, salutary effects on the biochemical parameters of I/R by decreasing the NO level, equilibrating iNOS and eNOS expressions, and decreasing arginase activity.  相似文献   

10.
The effects of a monoclonal antibody against L-selectin [leukocyte adhesion molecule (LAM)1-3] on microvascular fluid flux were determined in conscious sheep subjected to a combined injury of 40% third-degree burn and smoke inhalation. This combined injury induced a rapid increase in systemic prefemoral lymph flow (sQlymph) from the burned area and a delayed-onset increase in lung lymph flow. The initial increase in sQlymph was associated with an elevation of the lymph-to-plasma oncotic pressure ratio; consequently, it leads to a predominant increase in the systemic soft tissue permeability index (sPI). In an untreated control group, the increased sPI was sustained beyond 24 h after injury. Pretreatment with LAM1-3 resulted in earlier recovery from the increased sPI, although the initial responses in sQlymph and sPI were identical to those in the nontreatment group. The delayed-onset lung permeability changes were significantly attenuated by pretreatment with LAM1-3. These findings indicate that both leukocyte-dependent and -independent mechanisms are involved in the pathogenesis that occurs after combined injury with burn and smoke inhalation.  相似文献   

11.
We early show that glutamate (Glu) mediate hyperoxia-induced newborn rat lung injury through N-methyl-d-aspartate receptor (NMDAR). In this study, we search for evidence of NMDAR expression on newborn rat alveolar macrophages (AMs) and the difference between newborn and adult rat AMs, and the possible effect on nitric oxide (NO) production of AMs by exogenous NMDA. The protein of NMDAR was showed by immunocytochemistry, and the mRNA was examined by RT-PCR and real-time PCR. The results show that: (i) both newborn and adult rat AMs express NMDAR1 and the four NMDAR2 subtypes and newborn rat AMs are higher expression. (ii) NMDA administration increase NO production, inducible nitric oxide synthase (iNOS) activity and iNOS mRNA expression of AMs. (iii) NMDAR activation elevates NO secretion of AMs, which suggests that AM may be one of the key cellular origin of the elevated NO secretion in hyperoxia-induced lung injury.  相似文献   

12.
Abstract

Introduction: A decrease in α-tocopherol (vitamin E) plasma levels in burn patients is typically associated with increased mortality. We hypothesized that vitamin E supplementation (α-tocopherol) would attenuate acute lung injury induced by burn and smoke inhalation injury.

Materials and Methods: Under deep anesthesia, sheep (33 ± 5 kg) were subjected to a flame burn (40% total body surface area, third degree) and inhalation injury (48 breaths of cotton smoke, < 40°C). Half of the injured group received α-tocopherol (1000 IU vitamin E) orally, 24 h prior to injury. The sham group was neither injured nor given vitamin E. All three groups (n = 5 per group) were resuscitated with Ringer's lactate solution (4 ml/kg/%burn/24 h), and placed on a ventilator (PEEP = 5 cmH2O; tidal volume = 15 ml/kg) for 48 h.

Results: Plasma α-tocopherol per lipids doubled in the vitamin E treated sheep. Vitamin E treatment prior to injury largely prevented the increase in pulmonary permeability index and moderated the increase in lung lymph flow (52.6 ± 6.2 ml/min, compared with 27.3 ± 6.0 ml/min, respectively), increased the PaO2/FiO2 ratio, ameliorated both peak and pause airway pressure increases, and decreased plasma conjugated dienes and nitrotyrosine.

Conclusions: Pretreatment with vitamin E ameliorated the acute lung injury caused by burn and smoke inhalation exposure.  相似文献   

13.
Topical administration of nitric oxide (NO) by inhalation is currently used as therapy in various pulmonary diseases, but preconditioning with NO to ameliorate lung ischemia/reperfusion (I/R) injury has not been fully evaluated. In this study, we investigated the effects of NO inhalation on functional pulmonary parameters using an in situ porcine model of normothermic pulmonary ischemia. After left lateral thoracotomy, left lung ischemia was maintained for 90 min, followed by a 5h reperfusion period (group I, n = 7). In group II (n = 6), I/R was preceded by inhalation of NO (10 min, 15 ppm). Animals in group III (n = 7) underwent sham surgery without NO inhalation or ischemia. In order to evaluate the effects of NO preconditioning, lung functional and hemodynamic parameters were measured, and the zymosan-stimulated release of reactive oxygen species in arterial blood was determined. Animals in group I developed significant pulmonary I/R injury, including pulmonary hypertension, a decreased pO(2) level in pulmonary venous blood of the ischemic lung, and a significant increase of the stimulated release of reactive oxygen species. All these effects were prevented, or the onset (release of reactive oxygen species) was delayed, by NO inhalation. These results indicate that preconditioning by NO inhalation before lung ischemia is protective against I/R injury in the porcine lung.  相似文献   

14.
目的:观察抗内毒素Fab’对严重烧伤早期肠源性内毒素血症小鼠肠组织中NO、iNOS、MDA水平的影响,探索防治烧伤脓毒症的新措施。方法:采用严重烧伤早期肠源性内毒素血症小鼠模型,分为烧伤组、治疗组及对照组,分别于6、12、24、48h4个时相点测定肠组织中NO、iNOS、MDA的浓度:结果:烧伤后肠组织中NO、iNOS、MDA水平均比正常对照组显著增高;治疗组肠组织中NO、iNOS、MDA水平较烧伤组显著降低。结论:抗内毒素Fab’能减轻内毒素对机体的损害,从而起到对严重烧伤早期肠源性脓毒症的防治作用。  相似文献   

15.
缺血再灌注对小鼠肠神经丛nNOS 和iNOS表达的影响   总被引:1,自引:0,他引:1  
目的观察缺血再灌注后小鼠回肠神经型一氧化氮合酶(neuron alnitric oxide synthase,nNOS)和诱导型一氧化氮合酶(induciblenitric oxide synthase,iNOS)的表达,探讨肠缺血再灌注损伤(ischemia-reperfusion injury,IRI)的发生机制。方法采用小鼠肠系膜上动脉缺血再灌注模型,根据不同再灌注时间对小鼠随机分1d组、3d组、5d组、7d组、对照组和假手术组,用SP法检测小鼠回肠nNOS和iNOS的表达情况。结果与对照组和假手术组相比较,nNOS在再灌注1d后开始在肌间神经丛持续高表达(P<0.01);而iNOS在再灌注3d后开始在肌间神经丛持续高表达(P<0.05)。结论nNOS和iNOS在肠缺血再灌注后的表达增强,提示一氧化氮及一氧化氮合酶与肠神经节细胞在缺血再灌注中的损伤有着密切关系。  相似文献   

16.
17.
The objective of this study was to determine the relationship between carboxyhemoglobin (COHb) formation, global oxygen transport, and cardiac performance in the acute phase of combined burn and smoke inhalation injury. Following a third degree burn of 20% of the total body surface area, adult sheep were subjected to cotton smoke (4x12 breaths) according to an established protocol. Compared with baseline (BL), the burn injury led to an immediate and sustained COHb-independent depression in myocardial contractility. Despite a progressive increase in COHb formation, up to a maximum of 78+/-3% (P < 0.001 vs BL), smoke inhalation did not further impair these hemodynamic changes. This study demonstrated that in the early stage of combined burn and smoke inhalation injury, the depression in cardiac function is basically triggered by the burn injury, whereas COHb generation secondary to cotton smoke exposure primarily contributes to pulmonary shunting.  相似文献   

18.
The effect of hyperoxia alone and in combination with inhaled nitric oxide (NO) on the integrity of lung mitochondrial DNA (mtDNA) in vivo was evaluated in Fischer 344 rats. PCR amplification of lung mtDNA using two sets of primers spanning 10.1 kb of the mtDNA revealed that inhalation of 20 ppm of NO in conjunction with hyperoxia (>95% O2) reduced the amplification of mtDNA templates by 10 +/- 1% and 26 +/- 3% after 24 h of exposure. The ability of mtDNA to amplify was not compromised in rats exposed to 80% O2, even in the presence of 20 ppm of inhaled NO. Surprisingly, exposure to >95% O2 alone for either 24 or 48 h did not compromise the integrity of mtDNA templates compared with air-exposed controls, despite evidence of genomic DNA injury. Interestingly, inhaling NO alone for 48 h increased mtDNA amplification by 12 +/- 2% to 21 +/- 7%. Injury to the lung mtDNA after exposure to >95% O2 plus 20 ppm of NO was transient as rats allowed to recover in room air after exposure displayed increased amplification, with levels exceeding controls by 20 +/- 3% to 29 +/- 4%. Increased amplification was not due to cellular proliferation or increased mitochondrial number. Moreover, the ratio of pulmonary mtDNA to genomic DNA remained the same between treatment groups. The results indicate that hyperoxia fails to induce significant injury to mtDNA, and whereas inhalation of NO with hyperoxia results in mtDNA damage, the lesions are rapidly repaired during recovery.  相似文献   

19.
Peroxynitrite, formed by nitric oxide (NO) and superoxide, can alter protein function by nitrating amino acids such as tyrosine, cysteine, trytophan, or methionine. Inducible nitric oxide synthase (Type 2 NOS or iNOS) converts arginine to citrulline, releasing NO. We hypothesized that peroxynitrite could function as a negative feedback modulator of NO production by nitration of iNOS. Confluent cultures of the murine lung epithelial cell line, LA-4 were stimulated with cytokines to express iNOS, peroxynitrite was added, and the flasks sealed. After 3 h, NO in the headspace above the culture was sampled. Peroxynitrite caused a concentration-dependent decrease in NO. Similar results were obtained when 3-morpholinosydnonimine (SIN-1), a peroxynitrite generator, was added to the flasks. PAPA-NONOate, the NO generator, did not affect the headspace NO. Nitration of the iNOS was confirmed by detection of 3-nitrotyrosine by Western blotting. These data suggest a mechanism for inhibition of NO synthesis at inflammatory sites where iNOS, NO, and superoxide would be expected.  相似文献   

20.
Fire accident victims who sustain both thermal injury to skin and smoke inhalation have gross evidence of systemic and pulmonary oxidant damage and acute lung injury. We hypothesized that gamma-tocopherol (gT), a reactive O(2) and N(2) scavenger, when delivered into the airway, would attenuate lung injury induced by burn and smoke inhalation. Acute lung injury was induced in chronically prepared, anesthetized sheep by 40% total burn surface area, third-degree skin burn and smoke insufflation (48 breaths of cotton smoke, <40 degrees C). The study groups were: (1) Sham (not injured, flaxseed oil (FO)-nebulized, n=6); (2) SA-neb (injured, saline-nebulized, n=6); (3) FO-neb (injured, FO-nebulized, n=6); and (4) gT+FO-neb (injured, gT and FO-nebulized, n=6). Nebulization was started 1 h postinjury, and 24 ml of FO with or without gT (51 mg/ml) was delivered into airways over 47 h using our newly developed lipid aerosolization device (droplet size: 2.5-5 microm). The burn- and smoke inhalation-induced pathological changes seen in the saline group were attenuated by FO nebulization; gT addition further improved pulmonary function. Pulmonary gT delivery along with a FO source may be a novel effective treatment strategy in management of patients with acute lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号