首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We observed previously that the carboxyl-terminal region of the third loop of the TSH receptor (amino acid residues 617-625) is important in signal transduction. To analyze this region in more detail, in the present study we used site-directed mutagenesis to substitute, on an individual basis, the seven amino acids previously mutated as a group. These amino acids are either charged residues or potential phosphorylation sites. Six of the mutant TSH receptors with individual amino acid substitutions bound TSH with high affinity and displayed a cAMP response to TSH stimulation similar to the wild-type TSH receptor. The mutant receptor TSH-R-Gly625 (Arg----Gly) did not transduce a signal, but these results are noninformative because of the loss of high affinity TSH binding. The present data indicate that for each of the six informative amino acid substitutions, the individual residues are not critical for signal transduction. A corollary of this conclusion is that in the important carboxyl-terminal region of the third cytoplasmic loop of the TSH receptor multiple amino acid residues function as a unit.  相似文献   

2.
The C-terminal region of the third intracellular loop of the AT(1) angiotensin receptor (AT(1)-R) is an important determinant of G protein coupling. The roles of individual residues in agonist-induced activation of G(q/11)-dependent phosphoinositide hydrolysis were determined by mutational analysis of the amino acids in this region. Functional studies on mutant receptors transiently expressed in COS-7 cells showed that alanine substitutions of the amino acids in positions 232-240 of the third loop had no major effect on signal generation. However, deletion mutations that removed Ile(238) or affected its position relative to transmembrane helix VI significantly impaired angiotensin II-induced inositol phosphate responses. Substitution of Ile(238) with an acidic residue abolished the ability of the receptor to mediate inositol phosphate production, whereas its replacement with basic or polar residues reduced the amplitude of inositol phosphate responses. Substitutions of Phe(239) with polar residues had relatively minor effects on inositol phosphate signal generation, but its replacement by aspartic acid reduced, and by positively charged residues (Lys, Arg) significantly increased, angiotensin II-induced inositol phosphate responses. The internalization kinetics of the Ile(238) and Phe(239) mutant receptors were impaired in parallel with the reduction in their signaling responses. These findings have identified Ile(238) and Phe(239) as the critical residues in the C-terminal region of the third intracellular loop of the AT(1)-R for receptor activation. They also suggest that an apolar amino acid corresponding to Ile(238) of the AT(1)-R is a general requirement for activation of other G protein-coupled receptors by their agonist ligands.  相似文献   

3.
The alpha-mating pheromone receptor encoded by the yeast STE2 gene is a G protein coupled receptor that initiates signaling via a MAP kinase pathway that prepares haploid cells for mating. To establish the range of allowed amino acid substitutions within transmembrane segments of this receptor, we conducted extensive random mutagenesis of receptors followed by screening for receptor function. A total of 157 amino acid positions in seven different mutagenic libraries corresponding to the seven predicted transmembrane segments were analyzed, yielding 390 alleles that retain at least 60 % of normal signaling function. These alleles contained a total of 576 unique amino acid substitutions, including 61 % of all the possible amino acid changes that can arise from single base substitutions. The receptor exhibits a surprising tolerance for amino acid substitutions. Every amino acid in the mutagenized regions of the transmembrane regions could be substituted by at least one other residue. Polar amino acids were tolerated in functional receptors at 115 different positions (73 % of the total). Hydrophobic amino acids were tolerated in functional receptors at all mutagenized positions. Substitutions introducing proline residues were recovered at 53 % of all positions where they could be brought about by single base changes. Residues with charged side-chains could also be tolerated at 53 % of all positions where they were accessible through single base changes. The spectrum of allowed amino acid substitutions was characterized in terms of the hydrophobicity, radius of gyration, and charge of the allowed substitutions and mapped onto alpha-helical structures. By comparing the patterns of allowed substitutions with the recently determined structure of rhodopsin, structural features indicative of helix-helix interactions can be discerned in spite of the extreme sequence divergence between these two proteins.  相似文献   

4.
The extracellular loops of G protein-coupled receptors (GPCRs) frequently contain binding sites for peptide ligands. However, the mechanism of receptor activation following ligand binding and the influence of the extracellular loops in other aspects of receptor function are poorly understood. Here we report a structure-function analysis of the first and third extracellular loops of the human C5a receptor, a GPCR that binds a 74-amino acid peptide ligand. Amino acid substitutions were randomly incorporated into each loop, and functional receptors were identified in yeast. The first extracellular loop contains a large number of positions that cannot tolerate amino acid substitutions, especially residues within the WXFG motif found in many rhodopsin-like GPCRs, yet disruption of these residues does not alter C5a binding affinity. These results demonstrate an unanticipated role for the first extracellular loop, and the WXFG motif in particular, in ligand-mediated activation of the C5a receptor. This motif likely serves a similar role in other GPCRs. The third extracellular loop, in contrast, contains far fewer preserved residues and appears to play a less essential role in receptor activation.  相似文献   

5.
To facilitate structure-function relationship studies of the V2 vasopressin receptor, a prototypical G(s)-coupled receptor, we generated V2 receptor-expressing yeast strains (Saccharomyces cerevisiae) that required arginine vasopressin-dependent receptor/G protein coupling for cell growth. V2 receptors heterologously expressed in yeast were unable to productively interact with the endogenous yeast G protein alpha subunit, Gpa1p, or a mutant Gpa1p subunit containing the C-terminal G alpha(q) sequence (Gq5). In contrast, the V2 receptor efficiently coupled to a Gpa1p/G alpha(s) hybrid subunit containing the C-terminal G alpha(s) sequence (Gs5), indicating that the V2 receptor retained proper G protein coupling selectivity in yeast. To gain insight into the molecular basis underlying the selectivity of V2 receptor/G protein interactions, we used receptor saturation random mutagenesis to generate a yeast library expressing mutant V2 receptors containing mutations within the second intracellular loop. A subsequent yeast genetic screen of about 30,000 mutant receptors yielded four mutant receptors that, in contrast to the wild-type receptor, showed substantial coupling to Gq5. Functional analysis of these mutant receptors, followed by more detailed site-directed mutagenesis studies, indicated that single amino acid substitutions at position Met(145) in the central portion of the second intracellular loop of the V2 receptor had pronounced effects on receptor/G protein coupling selectivity. We also observed that deletion of single amino acids N-terminal of Met(145) led to misfolded receptor proteins, whereas single amino acid deletions C-terminal of Met(145) had no effect on V2 receptor function. These findings highlight the usefulness of combining receptor random mutagenesis and yeast expression technology to study mechanisms governing receptor/G protein coupling selectivity and receptor folding.  相似文献   

6.
G protein-coupled receptors are one of the largest protein families in nature; however, the mechanisms by which they activate G proteins are still poorly understood. To identify residues on the intracellular face of the human C5a receptor that are involved in G protein activation, we performed a genetic analysis of each of the three intracellular loops and the carboxyl-terminal tail of the receptor. Amino acid substitutions were randomly incorporated into each loop, and functional receptors were identified in yeast. The third intracellular loop contains the largest number of preserved residues (positions resistant to amino acid substitutions), followed by the second loop, the first loop, and lastly the carboxyl terminus. Surprisingly, complete removal of the carboxyl-terminal tail did not impair C5a receptor signaling. When mapped onto a three-dimensional structural model of the inactive state of the C5a receptor, the preserved residues reside on one half of the intracellular surface of the receptor, creating a potential activation face. Together these data provide one of the most comprehensive functional maps of the intracellular surface of any G protein-coupled receptor to date.  相似文献   

7.
The M3 muscarinic receptor is a prototypical member of the class I family of G protein-coupled receptors (GPCRs). To facilitate studies on the structural mechanisms governing M3 receptor activation, we generated an M3 receptor-expressing yeast strain (Saccharomyces cerevisiae) that requires agonist-dependent M3 receptor activation for cell growth. By using receptor random mutagenesis followed by a genetic screen in yeast, we initially identified a point mutation at the cytoplasmic end of transmembrane domain (TM) VI (Q490L) that led to robust agonist-independent M3 receptor signaling in both yeast and mammalian cells. To explore further the molecular mechanisms by which point mutations can render GPCRs constitutively active, we subjected a region of the Q490L mutant M3 receptor that included TM V-VII to random mutagenesis. We then applied a yeast genetic screen to identify second-site mutations that could suppress the activating effects of the Q490L mutation and restore wild-type receptor-like function to the Q490L mutant receptor. This analysis led to the identification of 12 point mutations that allowed the Q490L mutant receptor to function in a fashion similar to the wild-type receptor. These amino acid substitutions mapped to two distinct regions of the M3 receptor, the exofacial segments of TM V and VI and the cytoplasmic ends of TM V-VII. Strikingly, in the absence of the activating Q490L mutation, all recovered point mutations severely reduced the efficiency of receptor/G protein coupling, indicating that the targeted residues play important roles in receptor activation and/or receptor/G protein coupling. This strategy should be generally applicable to identify sites in GPCRs that are critically involved in receptor function.  相似文献   

8.
Endocytosis of agonist-activated G protein-coupled receptors (GPCRs) is required for both resensitization and recycling to the cell surface as well as lysosomal degradation. Thus, this process is crucial for regulation of receptor signaling and cellular responsiveness. Although many GPCRs internalize into clathrin-coated vesicles in a dynamin-dependent manner, some receptors, including the M(2) muscarinic acetylcholine receptor (mAChR), can also exhibit dynamin-independent internalization. We have identified five amino acids, located in the sixth and seventh transmembrane domains and the third intracellular loop, that are essential for agonist-induced M(2) mAChR internalization via a dynamin-independent mechanism in JEG-3 choriocarcinoma cells. Substitution of these residues into the M(1) mAChR, which does not internalize in these cells, is sufficient for conversion to the internalization-competent M(2) mAChR phenotype, whereas removal of these residues from the M(2) mAChR blocks internalization. Cotransfection of a dominant-negative isoform of dynamin has no effect on M(2) mAChR internalization. An internalization-incompetent M(2) mutant that lacks a subset of the necessary residues can still internalize via a G protein-coupled receptor kinase-2 and beta-arrestin-dependent pathway. Furthermore, internalization is independent of the signal transduction pathway that is activated. These results identify a novel motif that specifies structural requirements for subtype-specific dynamin-independent internalization of a GPCR.  相似文献   

9.
The glucagon receptor is a member of a distinct class of G protein-coupled receptors (GPCRs) sharing little amino acid sequence homology with the larger rhodopsin-like GPCR family. To identify the components of the glucagon receptor necessary for G-protein coupling, we replaced sequentially all or part of each intracellular loop (i1, i2, and i3) and the C-terminal tail of the glucagon receptor with the 11 amino acids comprising the first intracellular loop of the D4 dopamine receptor. When expressed in transiently transfected COS-1 cells, the mutant receptors fell into two different groups with respect to hormone-mediated signaling. The first group included the loop i1 mutants, which bound glucagon and signaled normally. The second group comprised the loop i2 and i3 chimeras, which caused no detectable adenylyl cyclase activation in COS-1 cells. However, when expressed in HEK 293T cells, the loop i2 or i3 chimeras caused very small glucagon-mediated increases in cAMP levels and intracellular calcium concentrations, with EC50 values nearly 100-fold higher than those measured for wild-type receptor. Replacement of both loops i2 and i3 simultaneously was required to completely abolish G protein signaling as measured by both cAMP accumulation and calcium flux assays. These results show that the i2 and i3 loops play a role in glucagon receptor signaling, consistent with recent models for the mechanism of activation of G proteins by rhodopsin-like GPCRs.  相似文献   

10.
Recent studies suggest that the second extracellular loop (o2 loop) of bovine rhodopsin and other class I G protein-coupled receptors (GPCRs) targeted by biogenic amine ligands folds deeply into the transmembrane receptor core where the binding of cis-retinal and biogenic amine ligands is known to occur. In the past, the potential role of the o2 loop in agonist-dependent activation of biogenic amine GPCRs has not been studied systematically. To address this issue, we used the M(3) muscarinic acetylcholine receptor (M3R), a prototypic class I GPCR, as a model system. Specifically, we subjected the o2 loop of the M3R to random mutagenesis and subsequently applied a novel yeast genetic screen to identity single amino acid substitutions that interfered with M3R function. This screen led to the recovery of about 20 mutant M3Rs containing single amino acid changes in the o2 loop that were inactive in yeast. In contrast, application of the same strategy to the extracellular N-terminal domain of the M3R did not yield any single point mutations that disrupted M3R function. Pharmacological characterization of many of the recovered mutant M3Rs in mammalian cells, complemented by site-directed mutagenesis studies, indicated that the presence of several o2 loop residues is important for efficient agonist-induced M3R activation. Besides the highly conserved Cys(220) residue, Gln(207), Gly(211), Arg(213), Gly(218), Ile(222), Phe(224), Leu(225), and Pro(228) were found to be of particular functional importance. In general, mutational modification of these residues had little effect on agonist binding affinities. Our findings are therefore consistent with a model in which multiple o2 loop residues are involved in stabilizing the active state of the M3R. Given the high degree of structural homology found among all biogenic amine GPCRs, our findings should be of considerable general relevance.  相似文献   

11.
G protein-coupled receptors (GPCRs) mediate the ability of a diverse array of extracellular stimuli to control intracellular signaling. Many GPCRs are phosphorylated by G protein-coupled receptor kinases (GRKs), a process that mediates agonist-specific desensitization in many cells. Although GRK binding to activated GPCRs results in kinase activation and receptor phosphorylation, relatively little is known about the mechanism of GRK/GPCR interaction or how this interaction results in kinase activation. Here, we used the alpha2A-adrenergic receptor (alpha(2A)AR) as a model to study GRK/receptor interaction because GRK2 phosphorylation of four adjacent serines within the large third intracellular loop of this receptor is known to mediate desensitization. Various domains of the alpha(2A)AR were expressed as glutathione S-transferase fusion proteins and tested for the ability to bind purified GRK2. The second and third intracellular loops of the alpha(2A)AR directly interacted with GRK2, whereas the first intracellular loop and C-terminal domain did not. Truncation mutagenesis identified three discrete regions within the third loop that contributed to GRK2 binding, the membrane proximal N- and C-terminal regions as well as a central region adjacent to the phosphorylation sites. Site-directed mutagenesis revealed a critical role for specific basic residues within these regions in mediating GRK2 interaction with the alpha(2A)AR. Mutation of these residues within the holo-alpha(2A)AR diminished GRK2-promoted phosphorylation of the receptor as well as the ability of the kinase to be activated by receptor binding. These studies provide new insight into the mechanism of interaction and activation of GRK2 by GPCRs and suggest that GRK2 binding is critical not only for receptor phosphorylation but also for full activity of the kinase.  相似文献   

12.
Desensitization of G protein-coupled receptors (GPCRs) involves the binding of members of the family of arrestins to the receptors. In the model system involving the visual GPCR rhodopsin, activation and phosphorylation of rhodopsin is thought to convert arrestin from a low to high affinity binding state. Phosphorylation of the M(2) muscarinic acetylcholine receptor (mAChR) has been shown to be required for binding of arrestins 2 and 3 in vitro and for arrestin-enhanced internalization in intact cells (Pals-Rylaarsdam, R., and Hosey, M. M. (1997) J. Biol. Chem. 272, 14152-14158). For the M(2) mAChR, arrestin binding requires phosphorylation at multiple serine and threonine residues at amino acids 307-311 in the third intracellular (i3) loop. Here, we have investigated the molecular basis for the requirement of receptor phosphorylation for arrestin binding. Constructs of arrestin 2 that can bind to other GPCRs in a phosphorylation-independent manner were unable to interact with a mutant M(2) mAChR in which the Ser/Thr residues at 307-311 were mutated to alanines. However, although phosphorylation-deficient mutants of the M(2) mAChR that lacked 50-157 amino acids from the i3 loop were unable to undergo agonist-dependent internalization when expressed alone in tsA201 cells, co-expression of arrestin 2 or 3 restored agonist-dependent internalization. Furthermore, a deletion of only 15 amino acids (amino acids 304-319) was sufficient to allow for phosphorylation-independent arrestin-receptor interaction. These results indicate that phosphorylation at residues 307-311 does not appear to be required to activate arrestin into a high affinity binding state. Instead, phosphorylation at residues 307-311 appears to facilitate the removal of an inhibitory constraint that precludes receptor-arrestin association in the absence of receptor phosphorylation.  相似文献   

13.
Since the molecular cloning of the vzg-1/Edg-2/LPA1 gene, studies have attempted to characterize LPA1 receptor functionality into a single categorical role, different from the other Edg-family LPA receptors. The desire to categorize LPA1 function has highlighted its complexity and demonstrated that the LPA1 receptor does not have one absolute function throughout every system. The central nervous system is highly enriched in the LPA1 receptor, suggesting an integral role in neuronal processes. Metastatic and invasive breast cancer also appears to have LPA-mediated LPA1 receptor functions that enhance phenotypes associated with tumorigenesis. LPA1 possesses a number of motifs conserved among G protein-coupled receptors (GPCRs): a DRY-like motif, a PDZ domain, Ser/Thr predicted sites of phosphorylation, a di-leucine motif, double cysteines in the tail and conserved residues that stabilize structure and determine ligand binding. The third intracellular loop of the LPA1 receptor may be the crux of receptor signaling and attenuation with phosphorylation of Thr-236 potentially a key determinant of basal LPA1 signaling. Mutagenesis data supports the notion that Thr-236 regulates this process since mutating Thr-236 to Ala-236 increased basal and LPA-mediated serum response factor (SRF) signaling activity and Lys-236 further increased this basal signaling. Here we describe progress on defining the major functions of the LPA1 receptor, discuss a context dependent dualistic role as both a negative regulator in cancer and a proto-oncogene, outline its structural components at the molecular amino acid level and present mutagenesis data on the third intracellular loop of the receptor.  相似文献   

14.
Activation of G protein coupled receptors (GPCRs) by binding of ligand is the initial event in diverse cellular signaling pathways. To examine the frequency and diversity of mutations that cause constitutive activation of one particular GPCR, the yeast alpha-factor receptor, we screened libraries of random mutations for constitutive alleles. In initial screens for mutant receptor alleles that exhibit signaling in the absence of added ligand, 14 different point mutations were isolated. All of these 14 mutants could be further activated by alpha-factor. Ten of the mutants also acquired the ability to signal in response to binding of desTrp(1)?Ala(3)?lpha-factor, a peptide that acts as an antagonist toward normal alpha-factor receptors. Of these 10 mutants, at least eight alleles residing in the third, fifth, sixth, and seventh transmembrane segments exhibit bona fide constitutive signaling. The remaining alleles are hypersensitive to alpha-factor rather than constitutive. They can be activated by low concentrations of endogenous alpha-factor present in MATa cells. The strongest constitutively active receptor alleles were recovered multiple times from the mutational libraries, and extensive mutagenesis of certain regions of the alpha-factor receptor did not lead to recovery of any additional constitutive alleles. Thus, only a limited number of mutations is capable of causing constitutive activation of this receptor. Constitutive and hypersensitive signaling by the mutant receptors is partially suppressed by coexpression of normal receptors, consistent with preferential association of the G protein with unactivated receptors.  相似文献   

15.
The coupling of agonist-activated heptahelical receptors to their cognate G proteins is often dependent on the amino-terminal region of the third intracellular loop. Like many G protein-coupled receptors, the gonadotropin-releasing hormone (GnRH) receptor contains an apolar amino acid in this region at a constant distance from conserved Pro and Tyr/Asn residues in the fifth transmembrane domain (TM V). An analysis of the role of this conserved residue (Leu(237)) in GnRH receptor function revealed that the binding affinities of the L237I and L237V mutant receptors were unchanged, but their abilities to mediate GnRH-induced inositol phosphate signaling, G protein coupling, and agonist-induced internalization were significantly impaired. Receptor expression at the cell surface was reduced by replacement of Leu(237) with Val, and abolished by replacement with Ala, Arg, or Asp residues. These results are consistent with molecular modeling of the TM V and VI regions of the GnRH receptor, which predicts that Leu(237) is caged by several apolar amino acids (Ile(233), Ile(234), and Val(240) in TM V, and Leu(262), Leu(265), and Val(269) in TM VI) to form a tight hydrophobic cluster. These findings indicate that the conserved apolar residue (Leu(237)) in the third intracellular loop is an important determinant of GnRH receptor expression and activation, and possibly that of other G protein-coupled receptors.  相似文献   

16.
Prokineticins are a pair of signal factors involved in many physiological processes by binding to two closely related G-protein-coupled receptors, PKR1 and PKR2. Recently, mutations in prokineticin 2 (PK2) and PKR2 are found to be associated with Kallmann syndrome and/or idiopathic hypogonadotropic hypogonadism, disorders characterized by delayed puberty and infertility. However, little is known how PKRs interact and activate G-proteins to elicit signal transduction. In the present study, we took advantage of one disease-associated mutation (R164Q) located in the second intracellular (IL2) loop of PKR2, to investigate the role of IL2 loop in the cell signaling, G-protein binding and receptor trafficking. R164Q mutant PKR2 showed normal cell surface expression and ligand binding capacity. However, the PKR2 signaling was abolished by R164Q mutation. We demonstrated that R164Q mutation disrupted the interaction of IL2 loop to the Gα(q), Gα(i), and Gα(16)-proteins. A positive-charged amino acid at this position is required for proper function, and the signaling efficacy and potency depend on the net amount of positive charges. We also demonstrated that the interactive partner of Arg-164 may localize in the C-terminal five residues of Gα(q)-protein. A series of mutation analysis indicated that the basic amino acids at the C terminus of IL2 loop may function cooperatively in GPCRs. Furthermore, R164Q mutation also results in minimal ligand-induced endocytosis of PKR2. As many GPCRs share structural homology in the C terminus of IL2 loop, our findings may have general application in understanding structure and function of GPCRs.  相似文献   

17.
beta-Arrestins have been shown to inhibit competitively G protein-dependent signaling and to mediate endocytosis for many of the hundreds of nonvisual rhodopsin family G protein-coupled receptors (GPCR). An open question of fundamental importance concerning the regulation of signal transduction of several hundred rhodopsin-like GPCRs is how these receptors of limited sequence homology, when considered in toto, can all recruit and activate the two highly conserved beta-arrestin proteins as part of their signaling/desensitization process. Although the serine and threonine residues that form GPCR kinase phosphorylation sites are common beta-arrestin-associated receptor determinants regulating receptor desensitization and internalization, the agonist-activated conformation of a GPCR probably reveals the most fundamental determinant mediating the GPCR and arrestin interaction. Here we identified a beta-arrestin binding determinant common to the rhodopsin family GPCRs formed from the proximal 10 residues of the second intracellular loop. We demonstrated by both gain and loss of function studies for the serotonin 2C, beta2-adrenergic, alpha2a)adrenergic, and neuropeptide Y type 2 receptors that the highly conserved amino acids, proline and alanine, naturally occurring in rhodopsin family receptors six residues distal to the highly conserved second loop DRY motif regulate beta-arrestin binding and beta-arrestin-mediated internalization. In particular, as demonstrated for the beta2 AR, this occurs independently of changes in GPCR kinase phosphorylation. These results suggest that a GPCR conformation directed by the second intracellular loop, likely using the loop itself as a binding patch, may function as a switch for transitioning beta-arrestin from its inactive form to its active receptor-binding state.  相似文献   

18.
Family 3 G-protein-coupled receptors (GPCRs), which includes metabotropic glutamate receptors (mGluRs), sweet and "umami" taste receptors (T1Rs), and the extracellular calcium-sensing receptor (CaR), represent a distinct group among the superfamily of GPCRs characterized by large amino-terminal extracellular ligand-binding domains (ECD) with homology to bacterial periplasmic amino acid-binding proteins that are responsible for signal detection and receptor activation through as yet unresolved mechanism(s) via the seven-transmembrane helical domain (7TMD) common to all GPCRs. To address the mechanism(s) by which ligand-induced conformational changes are conveyed from the ECD to the 7TMD for G-protein activation, we altered the length and composition of a 14-amino acid linker segment common to all family 3 GPCRs except GABA(B) receptor, in the CaR by insertion, deletion, and site-directed mutagenesis of specific highly conserved residues. Small alterations in the length and composition of the linker impaired cell surface expression and abrogated signaling of the chimeric receptors. The exchange of nine amino acids within the linker of CaR with the homologous sequence of mGluR1, however, preserved receptor function. Ala substitution for the four highly conserved residues within this amino acid sequence identified a Leu at position 606 of the CaR critical for cell surface expression and signaling. Substitution of Leu(606) for Ala resulted in impaired cell surface expression. However, Ile and Val substitutions displayed strong activating phenotypes. Disruption of the linker by insertion of nine amino acids of a random-coiled structure uncoupled the ECD from regulating the 7TMD. These data are consistent with a model of receptor activation in which the peptide linker, and particularly Leu(606), provides a critical interaction for the CaR signal transmission, a finding likely to be relevant for all family 3 GPCRs containing this conserved motif.  相似文献   

19.
Melanin-concentrating hormone (MCH) receptor 1 (MCH1R) belongs to the class A G protein-coupled receptors (GPCRs). The MCH-MCH1R system plays a central role in energy metabolism, and thus the regulation of signaling pathways activated by this receptor is of particular interest. Regulator of G protein signaling (RGS) proteins work by increasing the GTPase activity of G protein alpha subunits and attenuate cellular responses coupled with G proteins. Recent evidence has shown that RGS proteins are not simple G protein regulators but equally inhibit the signaling from various GPCRs. Here, we demonstrate that RGS8, which is highly expressed in the brain, functions as a negative modulator of MCH1R signaling. By using biochemical approaches, RGS8 was found to selectively and directly bind to the third intracellular (i3) loop of MCH1R in vitro. When expressed in HEK293T cells, RGS8 and MCH1R colocalized to the plasma membrane and RGS8 potently inhibited the calcium mobilization induced by MCH. The N-terminal 9 amino acids of RGS8 were required for the optimal capacity to downregulate the receptor signaling. Furthermore, Arg(253) and Arg(256) at the distal end of the i3 loop were found to comprise a structurally important site for the functional interaction with RGS8, since coexpression of RGS8 with R253Q/R256Q mutant receptors resulted in a loss of induction of MCH-stimulated calcium mobilization. This functional association suggests that RGS8 may represent a new therapeutic target for the development of novel pharmaceutical agents.  相似文献   

20.
Systematic analysis of structural changes induced by activating mutations has been frequently utilized to study activation mechanisms of G-protein-coupled receptors (GPCRs). In the thyrotropin receptor and the lutropin receptor (LHR), a large number of naturally occurring mutations leading to constitutive receptor activation were identified. Saturating mutagenesis studies of a highly conserved Asp in the junction of the third intracellular loop and transmembrane domain 6 suggested a participation of this anionic residue in a salt bridge stabilizing the inactive receptor conformation. However, substitution of all conserved cationic residues at the cytoplasmic receptor surface did not support this hypothesis. Asp/Glu residues are a common motif at the N-terminal ends of alpha-helices terminating and stabilizing the helical structure (helix capping). Since Asp/Glu residues in the third intracellular loop/transmembrane domain 6 junction are not only preserved in glycoprotein hormone receptors but also in other GPCRs we speculated that this residue probably participates in an N-terminal helix-capping structure. Poly-Ala stretches are known to form and stabilize alpha-helices. Herein, we show that the function of the highly conserved Asp can be mimicked by poly-Ala substitutions in the LHR and thyrotropin receptor. CD and NMR studies of peptides derived from the juxtamembrane portion of the LHR confirmed the helix extension by the poly-Ala substitution and provided further evidence for an involvement of Asp in a helix-capping structure. Our data implicate that in addition to well established interhelical interactions the inactive conformation of GPCRs is also stabilized by specific intrahelical structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号