首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
晋西北黄土区幼龄柠条细根的净生长速率   总被引:3,自引:1,他引:2  
以晋西北黄土区5年生柠条(Caragana korshinskii)人工林为研究对象,使用微根管技术对林地100cm土层深度的柠条细根生长动态进行观测。以根长密度(RLD,mm.cm-3)为基本参数,以净生长量(RLDnet,mm.mm-3)和净生长速率(RLDNGR,mm.cm-.3d-1)为相应导出参数,对2007年生长季(4-9月份)柠条细根的RLDNGR及其与环境因子气温、降雨量、土壤温度、土壤水分的关系进行了探讨。结果表明:柠条细根的RLDnet为(2.923±1.767)mm.cm-3;RLDNGR为(0.113±0.069)mm.cm-.3d-1。50-100cm土层是柠条细根生长的活跃区,其细根RLDNGR是0-50cm土层细根的1.5倍。柠条细根生长的季节变化趋势呈单峰型,4月初至8月初RLDNGR逐渐增大,8月中旬RLDNGR达到最大,之后逐渐减小,9月下旬RLDNGR出现负值。统计分析表明,柠条细根的RLDNGR与气温呈显著正相关。年生长季柠条细根的累计净生长量为14.613mm.cm-3;累计净生产力为1.461×108m.hm-2。  相似文献   

2.
幼龄柠条细根的空间分布和季节动态   总被引:2,自引:0,他引:2  
张帆  陈建文  王孟本 《生态学报》2012,32(17):5484-5493
以晋西北黄土高原区5年生柠条(Caragana korshinskii)人工林为研究对象,应用Minirhizotron技术,分别在距茎干水平距离0 cm和50 cm处设点(以下简称为0 cm位点和50 cm位点),对林地0—100 cm土层深度范围内的柠条细根进行了观测。以2009年生长季(4—10月)的细根根长密度(RLD,mm/cm2)和表面积密度(RAD,mm2/cm2)数据为基础,结合同期环境因子(气温、降雨量、土壤温度和土壤含水量等)数据,对0 cm和50 cm两个位点的细根动态特点进行了比较研究。结果表明:(1)两个水平位点的细根垂直分布和季节变化趋势均具有一定差异,主要差异是0 cm位点0—60 cm各土层的RLD均大于50 cm位点,前者各测定期的RLD(RAD)均大于后者。因此,0 cm位点的细根分布量(4.04 mm/cm2和4.67 mm2/cm2)显著大于50 cm位点(3.07 mm/cm2和2.99 mm2/cm2)。(2)就整体(两个位点平均值)而言,RLD(RAD)的垂直分布以40—50cm土层最大,以60—70cm土层最小。RLD(RAD)的季节变化具有由小变大再变小的趋势。年生长季幼龄柠条细根的RLD和RAD总平均值分别为3.55 mm/cm2和3.83 mm2/cm2。(3)就0 cm位点、50 cm位点或整个林地而言,细根RLD的季节变化与气温和土壤温度的季节变化均具有显著正相关性。以上结果表明,幼龄柠条细根的水平分布具有"近主根"特点;RLD的季节变化与温度因子的季节变化具有高度一致性。  相似文献   

3.
柠条人工幼林细根生长和死亡的季节变化   总被引:1,自引:2,他引:1  
以晋西北黄土区5年生柠条(Caragana korshinskiiKom.)人工林为研究对象,应用微根管技术对林地100cm土层范围的柠条细根动态进行了观测。以细根根长密度(RLD,mm.cm-3)、生长速率(RLDgr,mm.cm-.3d-1)、死亡速率(RLDdr,mm.cm-.3d-1)和生死之比(Rgd)为基本参数,对生长季(2007年4-9月)柠条细根的生长和死亡特点及其与环境因子(如气温、降雨量、土壤温度、土壤水分等)的关系做了探讨。结果表明:(1)在生长季,柠条细根的平均RLDgr和RLDdr分别为0.1264mm.cm-.3d-1和0.0354mm.cm-.3d-1;(2)下层(50-100cm)细根的RLDgr大于上层(0-50cm);但是下层细根的RLDdr小于上层;(3)柠条细根RLDgr的季节变化趋势为4-7月份迅速增大,8月份达峰值,之后迅速减小;细根RLDdr的季节变化趋势则为4-7月初缓慢增大,之后迅速增大,在生长季末(9月下旬)达到最大;(4)柠条细根Rgd在生长季呈逐渐减小趋势,但是仅季末Rgd1,说明在生长季柠条的细根动态是一个以生长占优势的生死交织过程;(5)RLDgr与气温存在极显著正相关(P0.01),与土壤温度存在显著正相关(P0.05);但是RLDdr与各个环境因子的相关性均不显著(P0.05)。  相似文献   

4.
柠条人工林幼林与成林细根动态比较研究   总被引:2,自引:0,他引:2  
陈建文  王孟本  史建伟 《生态学报》2011,31(22):6978-6988
以晋西北黄土高原区柠条(Caragana korshinskii)人工林幼林和成林为研究对象,应用微根管技术(Minirhizotron technique)对林地0-100 cm土壤剖面的柠条细根生长动态进行了观测.以2007年生长季(4-9月)观测数据为基础,对两林地的柠条细根生长速率(G,mm cm-3 d-1)和细根死亡速率(M,mm cm-3 d-1)的时空变化格局及其与气温、降水、土壤温度和土壤水分等环境因子的关系进行了研究.结果表明,在年生长季,幼林的G(0.1264 mm cm-3 d-1)和M(0.0354 mm cm-3 d-1)均高于成林(分别为0.0914 mm cm-3 d-1和0.0220 mm cm-3 d-1).在垂直分布上,幼林G出现最大值的土层深度(70-80 cm)较成林(50-60 cm)为深.两林地的G和M具有相似的季节变化特点,即G在4月到7月之间缓慢增大,8月迅速达到峰值,之后迅速减小;M自4月至9月M呈持续增高趋势.配对数据t检验结果显示,幼林与成林的C没有显著差异(P>0.05),而幼林的M显著高于成林(P<0.05).Pearson相关系数表明,幼林和成林G的垂直分布与土壤温度和土壤水分的垂直变化没有显著相关性;但是幼林和成林M的垂直分布与土壤温度的相关性显著(幼林地P<0.01;成林地P<0.05).在年生长季,幼林G与气温和土壤温度具有显著正相关性(与气温的P<0.01;与土壤温度的P<0.05);而成林G与各环境因子的相关性则均不显著(P>0.05).两林地的M与各环境因子的相关性均不显著(P>0.05).  相似文献   

5.
关帝山华北落叶松人工林细根生物量空间分布及季节变化   总被引:2,自引:0,他引:2  
利用根钻法研究了山西关帝山华北落叶松(Larix principis—rupprechtii Mayr)人工林细根生物量的空间分布和季节变化特征。结果表明,华北落叶松不同径级细根生物量随土层深度的增加而逐渐减少,土壤表层(0—10cm)中各径级细根的生物量最高,Ⅰ级细根(根直径0~1mm)的生物量在不同土层深度间差异显著(P〈0.05);距树干不同水平距离处各径级的细根生物量差异均未达到显著水平(P〉0.05)。在0~10cm土层中,各径级细根生物量的季节变化差异显著(P〈0.05),均表现为单峰型,峰值出现在9月份;在10~20cm和20-30cm土层中,Ⅰ级和Ⅱ级(根直径1~2mm)细根生物量季节变化差异显著,Ⅲ级细根(根直径2~5mm)和Ⅰ级死根(根直径0~2mm)生物量季节变化差异不显著。  相似文献   

6.
陈建文  史建伟  王孟本 《生态学报》2016,36(13):4021-4033
采用微根管技术(Minirhizotron technique)对晋西北黄土丘陵区幼林(5a)与成林(30a)柠条(Caragana korshinskii)细根动态进行了为期5a的原位观测。基于2008—2011年的观测数据,对两林龄柠条不同土层细根现存量动态进行了比较研究,并探讨了两林龄柠条细根现存量与不同年际间水热条件的差异。结果表明:在0—100 cm土壤剖面,柠条幼林与成林细根现存量的峰值均位于50 cm土层以下,成林细根现存量峰值位于50—60 cm土层,幼林细根现存量峰值则从观测期初的90—100 cm土层到观测期末的80—90 cm土层。各观测年内,两林地各土层每年生长季初(3—4月)会出现细根现存量的积累;30—100 cm土层中,幼林细根最大现存量出现时间均较成林早,而生长季末(9—10月),所有土层幼林细根现存量下降均较成林快。柠条细根现存量的垂直分布主要受土壤水分影响,季节变化受温度的影响更大,年际间细根现存量的差异主要是由于年降雨量变化;幼林细根现存量受降水、土壤水分、土壤温度等的影响比成林大。  相似文献   

7.
2004—2008年,采用微根管(minirhizotron)技术,对落叶松人工林细根生产和死亡进行连续动态观测,同时测定了温度(大气温度和土壤10 cm温度)和水分(降雨量和土壤10 cm深处含水量)的变化,研究细根生产、死亡的动态及其与温度和水分的关系.结果表明:落叶松细根年根长生产量在0.20~0.78 mm.cm-2,死亡量在0.26~0.72 mm.cm-2;2004—2006年细根年根长平均生产量(0.67 mm.cm-2)和死亡量(0.59 mm.cm-2)均高于2007—2008年细根年根长平均生产量和死亡量(0.37和0.39 mm.cm-2);在生长季内(5—10月),落叶松春末至夏季(6—7月)的细根生产量占全年产量的51%~68%,秋末(10月)仅占全年的1%~4%;而夏末(8月)和秋季(9—10月)细根死亡量占全年的59%~70%,早春(5月)占全年的1%~5%.相关分析表明,大气温度变化可以解释细根生产量66%的变异,而土壤10 cm深处温度解释24%,降雨量解释27%.细根的死亡量与土壤10 cm深处温度呈指数正相关.  相似文献   

8.
细根具有良好的可塑性, 不同根序等级的细根会表现不同的策略来适应土壤资源有效性的改变, 了解各级细根对土壤资源有效性的可塑性反应对认识细根的养分和水分吸收规律、预测碳(C)在地下的分配特点具有重要意义。该文以四川省丹陵县台湾桤木(Alnus formosana)-扁穗牛鞭草(Hemarthria compressa)复合模式为研究对象, 采用施肥处理, 应用土柱法采样, 探讨了施肥对台湾桤木-扁穗牛鞭草模式土壤表层(0-10 cm)和亚表层(10-20 cm)台湾桤木1-5级细根的生物量、形态特征(直径、比根长)、全C和全氮(N)含量的影响。结果表明: (1)台湾桤木1-5级细根直径随根序的增大而增加, 施肥降低土壤表层台湾桤木各级细根直径而增加了土壤亚表层台湾桤木各级细根直径; 台湾桤木1-5级细根比根长则随根序的增加而减小, 施肥增加了台湾桤木各级细根的比根长, 且施肥极显著增加了表层和亚表层台湾桤木前三级细根的比根长(p < 0.01)。(2)台湾桤木1-5级细根生物量均随土层深度的增加而减小, 施肥减少了台湾桤木各个土层各级细根生物量, 且显著降低了台湾桤木前三级细根生物量占总生物量的比例(p < 0.05), 而增加了4、5级细根生物量。(3)台湾桤木3级细根全C最大, 1级根最小, 且土壤表层台湾桤木各级细根全C含量大于亚表层; 施肥降低了台湾桤木各级细根全C含量, 但影响并不显著(p > 0.05)。台湾桤木细根全N含量随根序的增加而降低, 且土壤表层1-5级细根全N含量均高于亚表层; 施肥极显著(p < 0.01)增加了土壤表层1级细根及亚表层1、2级细根的全N含量, 而对于3-5级细根全N含量则影响不显著(p > 0.05)。以上结果显示, 当土壤资源有效性变化时, 各级根序细根会作出不同的可塑性反应, 且施肥对各级细根的影响主要表现在低级根上。  相似文献   

9.
落叶松人工林细根动态与土壤资源有效性关系研究   总被引:35,自引:4,他引:35       下载免费PDF全文
树木细根在森林生态系统C和养分循环中具有重要的作用。由于温带土壤资源有效性具有明显的季节变化, 导致细根生物量、根长密度 (Rootlengthdensity, RLD) 和比根长 (Specificrootlength, SRL) 的季节性变化。以 17年生落叶松 (Larixgmelini) 人工林为研究对象, 采用根钻法从 5月到 10月连续取样, 研究了不同土层细根 (直径≤ 2mm) 生物量、RLD和SRL的季节动态, 以及这些根系指标动态与土壤水分、温度和N有效性的关系。结果表明 :1) 落叶松细根年平均生物量 (活根 +死根 ) 为 189.1g·m-2 ·a-1, 其中 5 0 %分布在表层 (0~ 10cm), 33%分布在亚表层 (11~ 2 0cm), 17%分布在底层 (2 1~ 30cm) 。活根和死根生物量在 5~ 7月以及 9月较高, 8月和 10月较低。从春季 (5月 ) 到秋季 (10月 ), 随着活细根生物量的减少, 死细根生物量增加 ;2 ) 土壤表层 (0~ 10cm) 具有较高的RLD和SRL, 而底层 (2 1~ 30cm) 最低。春季 (5月 ) 总RLD和SRL最高, 分别为 10 6 2 1.4 5m·m-3 和 14.83m·g-1, 到秋季 (9月 ) 树木生长结束后达到最低值, 分别为 2 198.2 0m·m-3 和 3.77m·g-1;3) 细根生物量、RLD和SRL与土壤水分、温度和有效N存在不同程度的相关性。从单因子分析来看, 土壤水分和有效N对细根的影响明显大于温度, 对活根的影响大于死根。由于土壤资源有效性的季节变化, 使得C的地下分配格局发生改变。各土层细根与有效性资源之间的相关性反映了细根功能季节性差异。细根 (生物量、RLD和SRL) 的季节动态 (5 8%~ 73%的变异 ) 主要由土壤资源有效性的季节变化引起。  相似文献   

10.
全球变暖对滨海湿地植物细根的影响目前尚不十分清楚。以长江口崇明东滩芦苇(Phragmites australis)湿地为对象,利用开顶式生长箱法进行模拟升温。于2019年5-10月,结合微根管法和根钻法,对0-40 cm土层细根(直径≤2 mm芦苇须根)的总根长、总表面积、比根长、比表面积、平均直径和生物量等指标开展连续观测,并计算其净生长速率和周转速率,分析气温升高对芦苇湿地细根形态特征和生长动态的影响。结果表明:在整个生长季,升温显著提高了0-40 cm土层细根的总根长、总表面积和总生物量,且主要表现在0-20 cm土层,而对比根长、比表面积无显著影响。升温显著增强了0-40 cm土层细根的净生长速率,且使其季节变异性加大。升温显著提高了10-40 cm土层细根的周转速率,但在0-10 cm土层影响不显著。总之,升温显著提高了芦苇湿地细根的总量和生长速率,改变其在土壤中的垂直分布格局,但对其水分和养分吸收效率无显著影响。升温使细根周转速率加快,同时使参与周转的细根总量增加,导致各土层特别是0-20 cm土层根源有机碳输入显著增加,这可能会深刻影响芦苇湿地的土壤碳平衡。  相似文献   

11.
In an artificial Salix gordejevii Chang et Skv. plantation of the Horqin sandy land, we investigated vertical distribution (in 0–100 cm depth), biomass (FRD), fine root production (FRP), fine root length density (FRLD) and turnover of fine roots (<2 mm diameter) at three sites (dune top, midslope and bottom of dune) along leeward slopes. Meanwhile, the correlation between FRP and soil available resources was analyzed. Our results indicate that more than 65% of total fine root biomass is distributed in 0–40 cm depth, and the patterns are different at three sites. The mean monthly FRD ranges from 227 to 324 g·m?2, and they follows the order: dune top > midslope > bottom of dune. Ingrowth cores were harvested after 2, 3, 4, 5, 6 and 8 months of installation. At the first five sampling times, FRP and FRLD (0–40 cm) follows the same order with FRD along the topographical gradient, while FRP harvested after 8 months does not follow the same tendency, they are 348, 402 and 356 g·cm?2 in dune top, midslope and bottom of dune, respectively. Fine root turnover ranges from 1.04–1.92 year?1, and fine root turnover (20–40 cm) increases from dune top to bottom of dune along the topographical gradient. Correlation analysis between FRP and soil available resources indicates that only mean soil volumetric water content significantly correlates with annual FRP, which suggests that soil water content might be more crucial for shrub growth than fertility along the topographical gradient.  相似文献   

12.
Fine root tumover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past,our understanding of it remains limited.This is because the dynamics processes associated with soil resources availability are still poorly understood.Soil moisture,temperature,and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level.In temperate forest ecosystems,seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground.Therefore,fine root biomass,root length density(RLD)and specific root length(SRL)vary during the growing season.Studying seasonal changes of fine root biomass,RLD,and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover.The objective of this study was to understand whether seasonal variations of fine root biomass,RLD and SRL were associated with soil resource availability,such as moisture,temperature,and nitrogen,and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation.We used a soil coring method to obtain fine root samples(≤2 mm in diameter)every month from Mav to October in 2002 from a 17-year-old L.gmelinii plantation in Maoershan Experiment Station,Northeast Forestry University,China.Seventy-two soil cores(inside diameter 60 mm;depth intervals:0-10 cm,10-20 cm,20-30 cm)were sampled randomly from three replicates 25 m×30 m plots to estimate fine root biomass(live and dead),and calculate RLD and SRL.Soil moisture,temperature,and nitrogen(ammonia and nitrates)at three depth intervals were also analyzed in these plots.Results showed that the average standing fine root biomass(live (32.2 g.m-2.a-1)in the middle(10-20 cm)and deep layer (20-30cm),respectively.Live and dead fine root biomass was the highest from May to July and in September,but lower in August and October.The live fine root biomass decreased and dead biomass increased during the growing soil layer.RLD and SRL in May were the highestthe other months,and RLD was the lowest in Septemberdynamics of fine root biomass,RLD,and SRL showed a close relationship with changes in soil moisture,temperature,and nitrogen availability.To a lesser extent,the temperature could be determined by regression analysis.Fine roots in the upper soil layer have a function of absorbing moisture and nutrients,while the main function of deeper soil may be moisture uptake rather than nutrient acquisition.Therefore,carbon allocation to roots in the upper soil layer and deeper soil layer was different.Multiple regression analysis showed that variation in soil resource availability could explain 71-73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass.These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability,which resulted in an increased allocation of carbohydrate to these roots,but a lower allocation of carbohydrate to those in soil with lower resource availability.  相似文献   

13.
Growth and vertical distribution of fine root closely depend on soil resource availability. Better understanding of relationships of root profile with vertical distribution of available soil resource and soil characteristics can allow ecologists to predict the fine root distribution on the scales ranging from individual plants to vegetation communities. The objective of the study was to understand the fine root mass density (FRMD), fine root length density (FRLD), fine root area density (FRAD), mean root diameter and specific root length (SRL), vertical distribution in soil profile and their relation with soil environment factors in semiarid and arid Loess Plateau of China. The vertical fine root distribution and soil bulk density, soil moisture and soil inorganic N in 0-60 cm soil profile (0–15, 15–30, 30–45 and 45–60 cm intervals) were investigated by soil coring methods in three Pinus tabulaeformis Carr. forests chosen at three locations. The fine root density parameters (FRMD, FRLD and FRAD) and SRL peaked in the most upper soil layer (0–15 cm interval) and decreased with increased soil depth. The results provided a strong support that soil water rather than soil inorganic N is a key control on fine root distribution in the Loess Plateau. With increased soil moisture, the root mass, length and SRL increased and the mean root diameter decreased. The effects of soil bulk density on the fine root parameters were consistent with those of the soil water. An unexpected result was obtained about the relationships between soil organic N and the root distributions and occurrences because of no differences among the soil depth intervals in soil inorganic N content. It might be associated with severe soil water deficit limiting soil nitrogen utilization efficiency in arid Loess Plateau.  相似文献   

14.
柠条细根的空间分布特征及其季节动态   总被引:3,自引:0,他引:3  
以晋西北黄土区30年生柠条(Caragana korshinskii Kom.)人工林为研究对象,2007年应用Minirhizotron技术,分别在距茎干水平距离0、50、100 cm处设点,对林地0-100 cm土层深度范围内的柠条细根空间分布及其生长季的动态进行了研究。结果表明:(1)生长季柠条细根根长密度(RLD)总平均值为1.3423 mm/cm2。在水平方向上,距茎干水平距离50 cm处分布最多(1.5369 mm/cm2),其次为0 cm处(1.3855 mm/cm2), 100cm处分布最少(1.1044 mm/cm2)。在垂直深度上,各土层RLD平均值大小顺序为40-60 cm>60-80 cm>20-40 cm>0-20 cm>80-100 cm;(2)在0-100 cm土层范围内,月平均RLD在生长季的波动范围为0.4405 2.1040 mm/cm2,其中9月份最多,4月份最少;RLD在5个土层深度3个水平距离处随季节变化均表现先增加后减少的趋势,且不同空间位置RLD峰值变化均在秋季(8 10月份)波动。细根的这种时空分布差异,可能主要受林下土壤资源空间异质性及其季节性变化的影响,但也不排除其它因素的影响(如真菌,植食性昆虫)。  相似文献   

15.
 该文研究了华北落叶松(Larix principis-rupprechtii)人工林细根生物量水平分布和季节变化特征。采用钻土芯法(土钻内径7.0 cm), 在距树干20、50和100 cm处设取样点, 每个样点处分3层(0~10、11~20和21~30 cm)钻取土芯, 取样时间为5、7、9和10月。华北落叶松人工林细根(≤2 mm)生物量全年平均值为224.89 g&#8226;m–2, 在水平分布上表现为100 cm处细根生物量最大(244.20 g&#8226;m–2), 其次为20 cm处(221.03 g&#8226;m–2), 50 cm处最少(209.45 g&#8226;m–2)。在0~30 cm土层, 总细根(包括活跟和死根)生物量季节变化范围在169.67~263.09 g&#8226;m–2之间, 9月细根生物量最大, 5月细根生物量最少。0~10 cm土层细根生物量季节变化差异显著(p<0.05), 11~20和21~30 cm差异不显著(p>0.05)。距树干100和20 cm处(0~10 cm土层), 细根生物量的季节变化差异明显(p<0.05), 9月总细根生物量最大(172.82和185.68 g&#8226;m–2), 5月总细根生物量最少(69.28和73.47 g&#8226;m–2); 50 cm处季节变化差异不明显(p>0.05)。细根生物量分布和季节变化不仅受土壤垂直格局影响同时也与距树干不同水平距离有很大的关系。  相似文献   

16.
三峡库区马尾松根系生物量的空间分布   总被引:8,自引:0,他引:8  
以三峡库区主要植被马尾松人工林为研究对象,用内径为10 cm的根钻,分别在马尾松中龄林、近熟林和成熟林内,据树干0.5、1.0、1.5 m和2.0 m处设置取样点,各样点按0-10、10-20、20-30、30-40、40-60 cm将土壤分为5个垂直层次,对马尾松根系的空间分布格局进行调查。结果表明:(1)三峡库区马尾松总根系生物量(0-10 mm)为中龄林(4.72 t/hm2)显著高于成熟林(2.94 t/hm2)和近熟林(2.40 t/hm2)(P<0.05)。细根(0-2 mm)生物量随年龄增加而递减,差异不显著(P>0.05);(2)马尾松3个林龄中根系生物量表现出一定的水平分布特征,但具体趋势表现各异,细根生物量最大值均出现在距离样木1.0 m处;(3)细根主要分布在土壤上层,其中47.53%-71.73%的活细根集中在0-20 cm土壤深度内,且随土层的加深,其生物量明显减少。粗根(2-10 mm)则主要分布于20-60 cm土层范围内;(4)根系直径越小,受环境变化越明显。马尾松细根生物量分布主要受土壤深度的影响,树龄和不同水平距离对细根分布格局影响不显著(P>0.05),各因素对粗根生物量的影响均未达到显著水平(P>0.05)。  相似文献   

17.
细根空间分布特征能够反映植物对环境的利用程度和适应性,这对评价植物适应逆境至关重要。为了探究胡杨细根空间分布在干旱环境下的适应性特征,以塔里木河下游极端干旱区不同地下水埋深条件下的成年胡杨(Populus euphratica Oliv.)为对象,采用人工挖掘法,对胡杨细根(D≤2 mm)空间分布及其与地下水埋深和土壤水分的关系进行了研究。结果显示:(1)在水平方向上(550 cm范围内),胡杨细根的根长密度(RLD)、表面积密度(SAD)、根质量密度(RMD)随水平距离的增加未发生显著变化;(2)在垂直方向上,土壤表层基本无细根分布,随土壤深度加深,胡杨细根RLD、RMD呈先增加后减少的分布特征,并且在地下水埋深较深处,胡杨细根在较深土壤层(280 cm)仍保持较高的比根长(SRL)和比表面积(SRA);(3)胡杨细根RLD、RMD与上层土壤(0~180 cm)含水量存在较高的正相关关系,而与深层土壤(180 cm以下)含水量存在空间差异。本研究表明生长在上层土壤(0~180 cm)的胡杨细根主要受水分的限制,而生长在土壤深层的细根很可能受地下水埋深的影响,同时为了应对干旱环境,胡杨根系不仅具有较强的水平扩展能力,也会向深层湿润的土壤发展。研究结果可为极端干旱环境下胡杨适应机制的研究提供参考。  相似文献   

18.
Pavón  Numa P.  Briones  Oscar 《Plant Ecology》2000,146(2):131-136
In a semidesert community in México (Zapotitlán de las Salinas, Puebla) the vertical distribution of roots and root biomass was estimated at 0–100 cm depth on two sampling dates, November 1995 (wet season) and January 1998 (dry season). Root productivity at 7 to 14.5 cm depth was estimated with the in-growth core technique every two months from March 1996 to February 1998. The relationship between environmental factors and seasonal root productivity was analyzed. Finally, we tested the effect of an irrigation equivalent to 20 mm of rain on root production. Seventy four percent of the total number of roots were found at 0-40 cm depth. Very fine roots (<1 mm diameter) were found throughout the soil profile (0-100 cm). In contrast, fine roots (1-3 mm diameter) were found only from 0–90 cm depth, and coarse roots (>3 mm diameter) from 0–60 cm depth. The root biomass was 971.5 g m–2 (S.D. = 557.39), the very fine and fine roots representing 62.9% of the total. Total root productivity, as estimated with the ingrowth core technique, was 0.031 Mg ha–1 over the dry season and 0.315 Mg ha–1 over the wet season. Only very fine roots were obtained at all sampling dates. Rainfall was significantly correlated with very fine root production. The difference between fine root production in non-watered (0.054 g m–2) and watered (0.429 g m–2) treatments was significant. The last value was the same as that predicted for a rain of 20 mm, according to the exponential model describing the relation between the production of very fine roots and rainfall at the site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号