首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Three forms of feline immunodeficiency virus protease (FIV PR), the wild type (wt) and two single point mutants, V59I and Q99V, as well as human immunodeficiency virus type 1 protease (HIV-1 PR), were cocrystallized with the C2-symmetric inhibitor, TL-3. The mutants of FIV PR were designed to replace residues involved in enzyme-ligand interactions by the corresponding HIV-1 PR residues at the structurally equivalent position. TL-3 shows decreased (improved) inhibition constants with these FIV PR mutants relative to wt FIV PR. Despite similar modes of binding of the inhibitor to all PRs (from P3 to P3'), small differences are evident in the conformation of the Phe side chains of TL-3 at the P1 and P1' positions in the complexes with the mutated FIV PRs. The differences mimick the observed binding of TL-3 in HIV-1 PR and correlate with a significant improvement in the inhibition constants of TL-3 with the two mutant FIV PRs. Large differences between the HIV-1 and FIV PR complexes are evident in the binding modes of the carboxybenzyl groups of TL-3 at P4 and P4'. In HIV-1 PR:TL-3, these groups bind over the flap region, whereas in the FIV PR complexes, the rings are located along the major axis of the active site. A significant difference in the location of the flaps in this region of the HIV-1 and FIV PRs correlates with the observed conformational changes in the binding mode of the peptidomimetic inhibitor at the P4 and P4' positions. These findings provide a structural explanation of the observed Ki values for TL-3 with the different PRs and will further assist in the development of improved inhibitors.  相似文献   

2.
A feline immunodeficiency virus (FIV) provirus with a vif gene deletion (FIVDelta vifATGgamma) that coexpresses feline gamma interferon (IFN-gamma) was tested as a proviral DNA vaccine to extend previous studies showing efficacy with an FIV-pPPRDelta vif DNA vaccine. Cats were vaccinated with either FIVDelta vifATGgamma or FIV-pPPRDelta vif proviral plasmid DNA or with both FIV-pPPRDelta vif DNA and a feline IFN-gamma expression plasmid (pCDNA-IFNgamma). A higher frequency of FIV-specific T-cell proliferation responses was observed in cats immunized with either FIVDelta vifATGgamma or FIV-pPPRDelta vif plus pCDNA-IFNgamma, while virus-specific cytotoxic-T-lymphocyte responses were comparable between vaccine groups. Antiviral antibodies were not observed postvaccination. Virus-specific cellular and humoral responses were similar between vaccine groups after challenge with a biological FIV isolate (FIV-PPR) at 13 weeks postimmunization. All vaccinated and unvaccinated cats were infected after FIV-PPR challenge and exhibited similar plasma virus loads. Accordingly, inclusion of plasmids containing IFN-gamma did not enhance the efficacy of FIV-pPPRDelta vif DNA immunization. Interestingly, the lack of protection associated with FIV-pPPRDelta vif DNA immunization contrasted with findings from a previous study and suggested that multiple factors, including timing of FIV-pPPRDelta vif inoculations and challenge, as well as route of challenge virus delivery, may significantly impact vaccine efficacy.  相似文献   

3.
4.
To examine the roles of auxiliary genes and the AP-1 binding site in the long terminal repeat of feline immunodeficiency virus (FIV) in vivo, three mutant viruses, which are defective in the vif gene ([delta]vif), ORF-A gene (deltaORF-A), and AP-1 binding site (deltaAP-1), and wild-type virus as a positive control were separately inoculated into three specific-pathogen-free cats. These cats were assessed by measuring the number of proviral DNA copies in peripheral blood mononuclear cells (PBMCs), the CD4/CD8 ratio and antibody responses to FIV for 16 weeks and then examining histological changes at necropsy. Although viral DNAs were detected in PBMCs from all 12 cats to various degrees until 16 weeks postinoculation, no virus was recovered from PBMCs of cats infected with (delta)vif virus during the observation period. However, a very weak antibody response was induced in one cat infected with the (delta)vif virus. In contrast, despite the successful recovery of virus from both groups of cats infected with deltaORF-A and deltaAP-1 virus, antibody responses and decrease in the CD4/CD8 ratio in the groups were milder than those in cats infected with wild-type virus. Furthermore, the numbers of proviral DNA copies in PBMCs from the two groups were not able to reach the level in cats infected with wild-type virus during the observation period. From these results, we conclude that these mutant viruses are still infectious for cats but failed in efficient viral replication and suggest that these auxiliary genes and enhancer element are important or essential to full viral replication kinetics and presumably to full pathogenicity during the early stage of infection in vivo.  相似文献   

5.
The surface glycoprotein (gp95) of the feline immunodeficiency virus (FIV) binds in a strain-specific manner to several cell surface molecules, including CXCR4, heparan sulfate proteoglycans (HSPGs), DC-SIGN, and a 43-kDa cell surface receptor on T cells recently identified as CD134 by M. Shimojima et al. (Science 303:1192-1195, 2004). CXCR4 is the entry receptor in all known cases, and the other molecules act as binding receptors to help facilitate infection. In this report, we confirm and extend the findings regarding CD134 as a primary receptor for FIV. In addition, we show that temperature critically influences the binding properties of FIV gp95 to CXCR4 and HSPGs. The data show that gp95 of the field strain FIV-PPR bound to CXCR4 at 22 degrees C, whereas binding was not detected at 4 degrees C. In contrast, binding of the laboratory adapted FIV-34TF10 gp95 was observed at either 4 degrees C or 22 degrees C, albeit at increased levels at the higher temperature. The level of CXCR4 increased after the temperature was switched from 4 to 22 degrees C, whereas the level of HSPGs decreased, resulting in higher binding of gp95 from both strains to CXCR4 and lower binding of gp95 of FIV-34TF10 to HSPGs (FIV-PPR gp95 does not bind to these molecules). The findings also show that HSPGs facilitate the CXCR4-mediated infectivity of CrFK and G355-5 cells by FIV-34TF10. These two nonlymphoid cell lines express very low levels of CXCR4 and are permissive to FIV-34TF10 but not to productive infection by FIV-PPR. However, overexpression of human CXCR4 in CrFK or G-355-5 cells resulted in extensive cell fusion and infection by FIV-PPR. Taken together, these findings indicate that factors that increase the effective concentration of CXCR4 enhance FIV infectivity and may involve (i) temperature or ligand-induced conformational changes in CXCR4 that enhance SU binding, (ii) coreceptor interactions with gp95 that either alter gp95 conformation to enhance CXCR4 binding and/or raise the localized concentration of receptor or ligand, or (iii) direct increase in CXCR4 concentration via overexpression.  相似文献   

6.
We have derived and characterized a highly pathogenic molecular isolate of feline immunodeficiency virus subtype C (FIV-C) CABCpady00C. Clone FIV-C36 was obtained by lambda cloning from cats that developed severe immunodeficiency disease when infected with CABCpady00C (Abbotsford, British Columbia, Canada). Clone FIV-C36 Env is 96% identical to the noninfectious FIV-C isolate sequence deposited in GenBank (FIV-Cgb; GenBank accession number AF474246) (A. Harmache et al.) but is much more divergent in Env when compared to the subgroup A clones Petaluma (34TF10) and FIV-PPR (76 and 78% divergence, respectively). Clone FIV-C36 was able to infect freshly isolated feline peripheral blood mononuclear cells and primary T-cell lines but failed to productively infect CrFK cells, as is typical of FIV field isolates. Two-week-old specific-pathogen-free cats infected with FIV-C36 tissue culture supernatant became PCR positive and developed severe acute immunodeficiency disease similar to that caused by the uncloned CABCpady00C parent. At 4 to 5 weeks postinfection (PI), 3 of 4 animals developed CD4(+)-T-cell depletion, fever, weight loss, diarrhea, and opportunistic infections, including ulcerative stomatitis and tonsillitis associated with abundant bacterial growth, pneumonia, and pyelonephritis, requiring euthanasia. Histopathology confirmed severe thymic and systemic lymphoid depletion. Interestingly, the dam also became infected with a high viral load at 5 weeks PI of the kittens and developed a similar disease syndrome, requiring euthanasia at 11 weeks PI of the kittens. This constitutes the first report of a replication-competent, infectious, and pathogenic molecular clone of FIV-C. Clone FIV-C36 will facilitate dissection of the pathogenic determinants of FIV.  相似文献   

7.
Cats immunized with cells infected with a primary isolate of feline immunodeficiency virus (FIV) and fixed with paraformaldehyde were challenged with cell-free or cell-associated homologous virus obtained ex vivo. Complete protection was observed in animals challenged with cell-free virus 4 months after completion of vaccination (p.v.) or with cell-associated virus 12 months p.v. In contrast, no protection was observed in cats challenged with cell-free virus 12 or 28 months p.v. or with cell-associated virus 37.5 months p.v. Prior to the 28- and 37.5-month challenges, the animals had received a booster dose of vaccine that had elicited a robust anamnestic immune response. These results show that vaccine-induced protection against ex vivo FIV is achievable but is relatively short-lived and can be difficult to boost.  相似文献   

8.
9.
10.
11.
Specific-pathogen-free cats, immunized with a 22-amino-acid synthetic peptide designated V3.3 and derived from the third variable region of the envelope glycoprotein of the Petaluma isolate of feline immunodeficiency virus (FIV), developed high antibody titers to the V3.3 peptide and to purified virus, as assayed by enzyme-linked immunoassays, as well as neutralizing antibodies, as assayed by the inhibition of syncytium formation in Crandell feline kidney cells. V3.3-immunized animals and control cats were challenged with FIV and then monitored for 12 months; V3.3 immunization failed to prevent FIV infection, as shown by virus isolation, anti-whole virus and anti-p24 immunoglobulin G antibody responses, and positive PCRs for gag and env gene fragments. Sequence analysis of the V3 region showed no evidence for the emergence of escape mutants that might have contributed to the lack of protection. The sera of the V3.3-hyperimmunized cats and two anti-V3.3 monoclonal antibodies neutralized FIV infectivity for Crandell feline kidney cells at high antibody dilutions but paradoxically failed to completely neutralize FIV infectivity at low dilutions. Moreover, following FIV challenge, V3.3-immunized animals developed a faster and higher antiviral antibody response than control cats. This was probably due to enhanced virus replication, as also suggested by quantitative PCR data.  相似文献   

12.
Virus-infected monocytes rarely are detected in the bloodstreams of animals or people infected with immunodeficiency-inducing lentiviruses, yet tissue macrophages are thought to be a major reservoir of virus-infected cells in vivo. We have identified feline immunodeficiency virus (FIV) clinical isolates that are pathogenic in cats and readily transmitted vertically. We report here that five of these FIV isolates are highly monocytotropic in vivo. However, while FIV-infected monocytes were numerous in the blood of experimentally infected cats, viral antigen was not detectable in freshly isolated cells. Only after a short-term (at least 12-h) in vitro monocyte culture were FIV antigens detectable (by immunocytochemical analysis or enzyme-linked immunosorbent assay). In vitro experiments suggested that monocyte adherence provided an important trigger for virus antigen expression. In the blood of cats infected with a prototype monocytotropic isolate (FIV subtype B strain 2542), infected monocytes appeared within 2 weeks, correlating with high blood mononuclear-cell-associated viral titers and CD4 cell depletion. By contrast, infected monocytes could not be detected in the blood of cats infected with a less pathogenic FIV strain (FIV subtype A strain Petaluma). We concluded that some strains of FIV are monocytotropic in vivo. Moreover, this property may relate to virus virulence, vertical transmission, and infection of tissue macrophages.  相似文献   

13.
A cytopathic variant of feline immunodeficiency virus (FIV) strain PPR emerged after passage of wild-type virus on an interleukin-2-independent cell line. The virus, termed FIV-PPRglial, displayed a phenotype markedly different from the parental virus, including the ability to productively infect previously refractory cell lines, induction of large syncytia, and accelerated kinetic properties. A chimeric molecular clone, FIV-PPRchim42, containing the FIV-PPRglial envelope within the backbone of FIV-PPR, exhibited all the characteristics of the FIV-PPRglial phenotype, demonstrating that the viral envelope was responsible for the acquired traits. Subsequent molecular characterization revealed that the FIV-PPRglial envelope contained five amino acid substitutions relative to wild-type FIV-PPR. Mutagenic analyses further demonstrated that the acquired phenotype was minimally attributable to a combination of three mutations, specifically, a glutamine-to-proline change within the second constant domain of the surface protein (SU); a threonine-to-proline change within the V4 loop, also in the SU; and a premature stop codon in the cytoplasmic tail of the transmembrane protein. All three changes were required to produce the FIV-PPRglial phenotype. Cotransfection studies with mutant viruses in combination with each other and with FIV-PPR indicated that the truncated cytoplasmic tail was responsible for the induction of syncytium formation. Receptor usage analyses were pursued, and distinctions were observed between FIV-PPR and FIV-PPRglial. In vitro infections with FIV-PPR, FIV-PPRglial, and FIV-34TF10 on two adherent cell lines were ablated in the presence of SDF1alpha, the natural ligand for CXCR4. In contrast, viral infection of T cells was not limited to CXCR4 usage, and inhibition studies indicate the potential involvement of a CC chemokine receptor.  相似文献   

14.
Recombinant Listeria monocytogenes has many attractive characteristics as a vaccine vector against human immunodeficiency virus (HIV). Wild-type and attenuated Listeria strains expressing HIV Gag have been shown to induce long-lived mucosal and systemic T-cell responses in mice. Using the feline immunodeficiency virus (FIV) model of HIV we evaluated recombinant L. monocytogenes in a challenge system. Five cats were immunized with recombinant L. monocytogenes that expresses the FIV Gag and delivers an FIV Env-expressing DNA vaccine (LMgag/pND14-Lc-env). Control cats were either sham immunized or immunized with wild-type L. monocytogenes (LM-wt). At 1 year after vaginal challenge, provirus could not be detected in any of the nine tissues evaluated from cats immunized with the recombinant bacteria but was detected in at least one tissue in 8 of 10 control animals. Virus was isolated from bone marrow of four of five LMgag/pND14-Lc-env-immunized cats by use of a stringent coculture system but required CD8(+) T-cell depletion, indicating CD8(+) T-cell suppression of virus replication. Control animals had an inverted CD4:CD8 ratio in mesenteric lymph node and were depleted of both CD4(+) and CD8(+) intestinal epithelial T cells, while LMgag/pND14-Lc-env-immunized animals showed no such abnormalities. Vaginal FIV-specific immunoglobulin A was present at high titer in three LMgag/pND14-Lc-env-immunized cats before challenge and in all five at 1 year postchallenge. This study demonstrates that recombinant L. monocytogenes conferred some control of viral load after vaginal challenge with FIV.  相似文献   

15.
The effects of preinfecting cats with a partially attenuated feline immunodeficiency virus (FIV) on subsequent infection with a fully virulent FIV belonging to a different subtype were investigated. Eight specific-pathogen-free cats were preinfected with graded doses of a long-term in vitro-cultured cell-free preparation of FIV Petaluma (FIV-P, subtype A). FIV-P established a low-grade or a silent infection in the inoculated animals. Seven months later, the eight preinfected cats and two uninfected cats were challenged with in vivo-grown FIV-M2 (subtype B) and periodically monitored for immunological and virological status. FIV-P-preinfected cats were not protected from acute infection by FIV-M2, and the sustained replication of this virus was accompanied by a reduction of FIV-P viral loads in the peripheral blood mononuclear cells and plasma. However, from 2 years postchallenge (p.c.) until 3 years p.c., when the experiment was terminated, preinfected cats exhibited reduced total viral burdens, and some also exhibited a diminished decline of circulating CD4+ T lymphocytes relative to control cats infected with FIV-M2 alone. Interestingly, most of the virus detected in challenged cats at late times p.c. was of FIV-P origin, indicating that the preinfecting, attenuated virus had become largely predominant. By the end of follow-up, two challenged cats had no FIV-M2 detectable in the tissues examined. The possible mechanisms underlying the interplay between the two viral populations are discussed.  相似文献   

16.
The ability of recombinant rhesus interleukin-12 (rMamu-IL-12) administration during acute simian immunodeficiency virus SIVmac251 infection to influence the quality of the antiviral immune responses was assessed in rhesus macaques. Group I (n = 4) was the virus-only control group. Group II and III received a conditioning regimen of rMamu-IL-12 (10 and 20 microg/kg, respectively, subcutaneously [s.c.]) on days -2 and 0. Thereafter, group II received 2 microg of IL-12 per kg and group III received 10 microg/kg s.c. twice a week for 8 weeks. On day 0 all animals were infected with SIVmac251 intravenously. While all four group I animals and three of four group II animals died by 8 and 10 months post infection (p.i.), all four group III animals remained alive for >20 months p.i. The higher IL-12 dose led to lower plasma viral loads and markedly lower peripheral blood mononuclear cell and lymph node proviral DNA loads. During the acute viremia phase, the high-IL-12-dose monkeys showed an increase in CD3(-) CD8 alpha/alpha(+) and CD3(+) CD8 alpha/alpha(+) cells and, unlike the control and low-IL-12-dose animals, did not demonstrate an increase in CD4(+) CD45RA(+) CD62L(+) naive cells. The high-IL-12-dose animals also demonstrated that both CD8 alpha/alpha(+) and CD8 alpha/beta(+) cells produced antiviral factors early p.i., whereas only CD8 alpha/beta(+) cells retained this function late p.i. Long-term survival correlated with sustained high levels of SIV gag/pol and SIV env cytotoxic T lymphocytes and retention of high memory responses against nominal antigens. This is the first study to demonstrate the capacity of IL-12 to significantly protect macaques from SIV-induced disease, and it provides a useful model to more precisely identify correlates of virus-specific disease-protective responses.  相似文献   

17.
Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS in domestic cats, similar to human immunodeficiency virus (HIV)/AIDS in humans. The FIV accessory protein Vif abrogates the inhibition of infection by cat APOBEC3 restriction factors. FIV also encodes a multifunctional OrfA accessory protein that has characteristics similar to HIV Tat, Vpu, Vpr, and Nef. To examine the role of vif and orfA accessory genes in FIV replication and pathogenicity, we generated chimeras between two FIV molecular clones with divergent disease potentials: a highly pathogenic isolate that replicates rapidly in vitro and is associated with significant immunopathology in vivo, FIV-C36 (referred to here as high-virulence FIV [HV-FIV]), and a less-pathogenic strain, FIV-PPR (referred to here as low-virulence FIV [LV-FIV]). Using PCR-driven overlap extension, we produced viruses in which vif, orfA, or both genes from virulent HV-FIV replaced equivalent genes in LV-FIV. The generation of these chimeras is more straightforward in FIV than in primate lentiviruses, since FIV accessory gene open reading frames have very little overlap with other genes. All three chimeric viruses exhibited increased replication kinetics in vitro compared to the replication kinetics of LV-FIV. Chimeras containing HV-Vif or Vif/OrfA had replication rates equivalent to those of the virulent HV-FIV parental virus. Furthermore, small interfering RNA knockdown of feline APOBEC3 genes resulted in equalization of replication rates between LV-FIV and LV-FIV encoding HV-FIV Vif. These findings demonstrate that Vif-APOBEC interactions play a key role in controlling the replication and pathogenicity of this immunodeficiency-inducing virus in its native host species and that accessory genes act as mediators of lentiviral strain-specific virulence.  相似文献   

18.

Background

Feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) are recently identified lentiviruses that cause progressive immune decline and ultimately death in infected cats and humans. It is of great interest to understand how to prevent immune system collapse caused by these lentiviruses. We recently described that disease caused by a virulent FIV strain in cats can be attenuated if animals are first infected with a feline immunodeficiency virus derived from a wild cougar. The detailed temporal tracking of cat immunological parameters in response to two viral infections resulted in high-dimensional datasets containing variables that exhibit strong co-variation. Initial analyses of these complex data using univariate statistical techniques did not account for interactions among immunological response variables and therefore potentially obscured significant effects between infection state and immunological parameters.

Methodology and Principal Findings

Here, we apply a suite of multivariate statistical tools, including Principal Component Analysis, MANOVA and Linear Discriminant Analysis, to temporal immunological data resulting from FIV superinfection in domestic cats. We investigated the co-variation among immunological responses, the differences in immune parameters among four groups of five cats each (uninfected, single and dual infected animals), and the “immune profiles” that discriminate among them over the first four weeks following superinfection. Dual infected cats mount an immune response by 24 days post superinfection that is characterized by elevated levels of CD8 and CD25 cells and increased expression of IL4 and IFNγ, and FAS. This profile discriminates dual infected cats from cats infected with FIV alone, which show high IL-10 and lower numbers of CD8 and CD25 cells.

Conclusions

Multivariate statistical analyses demonstrate both the dynamic nature of the immune response to FIV single and dual infection and the development of a unique immunological profile in dual infected cats, which are protected from immune decline.  相似文献   

19.
Feline immunodeficiency virus (FIV) is a lentivirus that causes immune suppression and neurological disease in cats. Among animal viruses, individual viral strains have been shown to be neurovirulent, but the role of viral strain specificity among lentiviruses and its relationship to systemic immune suppression in the development of neurological disease remains uncertain. To determine the extent to which different FIV strains caused neurological disease, FIV V1CSF and Petaluma were compared in ex vivo assays and in vivo. Both viruses infected and replicated in macrophage and mixed glial cell cultures at similar levels, but V1CSF induced significantly greater neuronal death than Petaluma in a neurotoxicity assay. V1CSF-infected animals showed significant neurodevelopmental delay compared to the Petaluma-infected and uninfected animals. Magnetic resonance spectroscopy studies of frontal cortex revealed significantly reduced N-acetyl aspartate/creatine ratios in the V1CSF group compared to the other groups. Cyclosporin A treatment of Petaluma-infected animals caused neurodevelopmental delay and reduced N-acetyl aspartate/creatine ratios in the brain. Reduced CD4+ and CD8+ cell counts were observed in the V1CSF-infected group compared to the uninfected and Petaluma-infected groups. These findings suggest that neurodevelopmental delay and neuronal injury is FIV strain specific but that systemic immune suppression is also an important determinant of FIV-induced neurovirulence.  相似文献   

20.
We have obtained the 1.7 Å crystal structure of FIV protease (PR) in which 12 critical residues around the active site have been substituted with the structurally equivalent residues of HIV PR (12X FIV PR). The chimeric PR was crystallized in complex with the broad-based inhibitor TL-3, which inhibits wild type FIV and HIV PRs, as well as 12X FIV PR and several drug-resistant HIV mutants [14]. Biochemical analyses have demonstrated that TL-3 inhibits these PRs in the order HIV PR > 12X FIV PR > FIV PR, with Ki values of 1.5 nM, 10 nM, and 41 nM, respectively [24]. Comparison of the crystal structures of the TL-3 complexes of 12X FIV and wild-typeFIV PR revealed theformation of additinal van der Waals interactions between the enzyme inhibitor in the mutant PR. The 12X FIV PR retained the hydrogen bonding interactions between residues in the flap regions and active site involving the enzyme and the TL-3 inhibitor in comparison to both FIV PR and HIV PR. However, the flap regions of the 12X FIV PR more closely resemble those of HIV PR, having gained several stabilizing intra-flap interactions not present in wild type FIV PR. These findings offer a structural explanation for the observed inhibitor/substrate binding properties of the chimeric PR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号