首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In nonhuman anthropoids, the anteroposterior (AP) diameters of the fetus are greater than the transverse (TR) diameters and the AP diameters of the pelvic planes are greater than the TR diameters: during labor, therefore, the fetus moves through the birth canal without changing position or orientation. In modern humans, the fetal head at term is encephalized and the fetal chest is flattened. The maternal pelvic inlet is flattened in an AP direction, the sacral promontory and the ischial spines are prominent. As a result, AP<TR at the inlet, but AP>TR at the midpelvis and outlet. In addition, the birth canal presents a marked sacral curvature in the AP direction. The human fetus successfully negotiates the birth canal because the three crucial fetal adaptations: (1) spheroidicity of the presenting part of the fetal head, which allows it to “roll” in the pelvis; (2) mobility of the head and chest in all directions; and (3) a capacity for cranial molding, which adapts fetal head dimensions to pelvic dimensions. The result is that the human fetal head and chest can perform multiple rotational movements in order to always present the greatest fetal diameters to the greatest pelvic diameters. Monkeys show a limited degree of encephalization and suffer from narrow TR pelvic diameters without any possibility of fetal adaptations as shown by humans. Apes also show some encephalization but, because of wider TR diameters in the pelvis, they achieve an easy delivery with no need of fetal adaptations.  相似文献   

2.
In the absence of processes regulating morphogenesis and growth, phenotypic variance of a population experiencing no selective mortality should increase throughout ontogeny. To determine whether it does, we measure variance of skull shape using geometric morphometrics and examine its ontogenetic dynamics in the precocial cotton rat (Sigmodon fulviventer) and the altricial house mouse (Mus musculus domesticus). In both species, variance of shape halves between the two youngest samples measured (between 1 and 10 days postnatal and 10 and 15 days postnatal, respectively) and thereafter is nearly constant. The reduction in variance did not appear to result from a general regulation of skull size or developmental timing, although skull size may also be regulated and developmental timing is an important component of the variation in skull shape of young house mice. The ontogenetic dynamics of variance suggest two possible scenarios. First, variation generated during fetal or early postnatal growth is not immediately compensated and therefore accumulates, whereas later in growth, variation is continually generated and rapidly compensated. Second, variation generated during fetal and early postnatal growth is rapidly compensated, after which no new variance is produced. Based on a general model for bone growth, we hypothesize that variance is generated when bone grows under the direction of disorganized muscular movements and decreases with increasing neuromuscular control. Additionally, increasing coherence of signals transmitted by the growing brain and sensory organs, which exert tensile forces on bone, may also canalize skull shape.  相似文献   

3.
The purpose of this study was to devise a means to use laser-Doppler flowmetry to measure cerebral perfusion before birth. The method has not been used previously, largely because of intrauterine movement artifacts. To minimize movement artifacts, a probe holder was molded from epoxy putty to the contour of the fetal skull. A curved 18-gauge needle was embedded in the holder. At surgery, the holder, probe, and skull were fixed together with tissue glue. Residual signals were recorded after fetal death and after maternal death 1 h later. These averaged <5% of baseline flow signals, indicating minimal movement artifact. To test the usefulness of the method, cerebral flow responses were measured during moderate fetal hypoxia induced by giving the ewes approximately 10% oxygen in nitrogen to breathe. As fetal arterial PO(2) decreased from 21.1 +/- 0.5 to 10.7 +/- 0.4 Torr during a 30-min period, cerebral perfusion increased progressively to 56 +/- 8% above baseline. Perfusion then returned to baseline levels during a 30-min recovery period. These responses are quantitatively similar to those spot observations that have been recorded earlier using labeled microspheres. We conclude that cerebral perfusion can be successfully measured by using laser-Doppler flowmetry with the unanesthetized, chronically prepared fetal sheep as an experimental model. With this method, relative changes of perfusion from a small volume of the ovine fetal brain can be measured on a continuous basis, and movement artifacts can be reduced to 5% of measured flow values.  相似文献   

4.
Neanderthal pelvic morphology is not well understood, despite the recent find and analysis of the Kebara 2 pelvis. Many of the proposed hypotheses focus on the possible need for a larger birth canal. A previously unexplored aspect involves possible direct obstetric implications of bone robusticity and density. These characteristics ocan affect obstetrics in modern humans, especially the molding of the neonate's head during parturition: engineering studies have shown that denser neonate cranial bones undergo less deformation, and thicker (more robust) cranial bones would also be expected to deform less during the birth process. These bone characteristics may also result in a less flexible birth canal. Thus, more robust or denser bones could result in the need for a larger birth canal or a smaller neonate head, due to decreased flexibility. Examples from modern populations are discussed and the conclusions applied to Neanderthals, who are known to have had high bone robusticity and may have had high bone density, given their heavy musculature. (A positive association between muscle mass and bone density has been observed repeatedly in modern humans.) We conclude that bone robusticity and density may have obstetrical implications for Neanderthals, with particular importance for neonate head molding during birth.  相似文献   

5.
Skull fracture is a frequently observed type of severe head injury. Historically, a variety of impact test set-ups and techniques have been used for investigating skull fracture. The most frequently used are the free-fall technique, the guided fall or drop tower set-up and the piston-driven impactor set-up. This document proposes a new type of set-up for cadaver head impact testing which combines the strengths of the most frequently used techniques and devices. The set-up consists of two pendulums, which allow for a 1 degree of freedom rotational motion. The first pendulum is the impactor and is used to strike the blow. The head is attached to the second pendulum using a polyester resin. Local skull deformation and impact force are measured with a sample frequency of 65 kHz. From these data, absorbed energy until skull fracture is calculated. A set-up evaluation consisting of 14 frontal skull and head impact tests shows an accurate measurement of both force and local skull deformation until fracture of the skull. Simplified mechanical models are used to analyse the different impacting techniques from literature as well as the new proposed set-up. It is concluded that the proposed test set-up is able to accurately calculate the energy absorbed by the skull until fracture with an uncertainty interval of 10%. Second, it is concluded that skull fracture caused by blunt impact occurs before any significant motion of the head. The two-pendulum set-up is the first head impact device to allow a well-controlled measurement environment without altering the skull stress distribution.  相似文献   

6.
Despite recent efforts on the development of finite element (FE) head models of infants, a model capable of capturing head responses under various impact scenarios has not been reported. This is hypothesized partially attributed to the use of simplified linear elastic models for soft tissues of suture, scalp and dura. Orthotropic elastic constants are yet to be determined to incorporate the direction-specific material properties of infant cranial bone due to grain fibres radiating from the ossification centres. We report here on our efforts in advancing the above-mentioned aspects in material modelling in infant head and further incorporate them into subject-specific FE head models of a newborn, 5- and 9-month-old infant. Each model is subjected to five impact tests (forehead, occiput, vertex, right and left parietal impacts) and two compression tests. The predicted global head impact responses of the acceleration–time impact curves and the force–deflection compression curves for different age groups agree well with the experimental data reported in the literature. In particular, the newly developed Ogden hyperelastic model for suture, together with the nonlinear modelling of scalp and dura mater, enables the models to achieve more realistic impact performance compared with linear elastic models. The proposed approach for obtaining age-dependent skull bone orthotropic material constants counts both an increase in stiffness and decrease in anisotropy in the skull bone—two essential biological growth parameters during early infancy. The profound deformation of infant head causes a large stretch at the interfaces between the skull bones and the suture, suggesting that infant skull fractures are likely to initiate from the interfaces; the impact angle has a profound influence on global head impact responses and the skull injury metrics for certain impact locations, especially true for a parietal impact.  相似文献   

7.
Fetal breathing and development of control of breathing   总被引:4,自引:0,他引:4  
Technical advances during the last several decades have greatly facilitated research into fetal physiology and behavior, specifically fetal breathing (FB). Breathing movements have been demonstrated in the fetuses of every mammalian species investigated and appear to be part of normal fetal development. In this review we focus on the methods of measuring FB and on some of the problems associated with these measurements and their interpretation. We also review fetal behavior, the role of the peripheral and central chemoreceptors in spontaneous FB, the fetal respiratory response to hypercapnia and hypoxia, and the transition to continuous breathing at birth. It is clear that in many ways the control of breathing movements in utero differs from that after birth. In particular, inhibitory influences are much more prominent before than after birth. Possibly this is due to the unique fetal situation, in which conservation of energy may be more important than any advantage breathing activity imparts to the fetus.  相似文献   

8.
Two-dimensional (2-D) strain fields were estimated non-invasively in two simple experimental models of closed-head brain injury. In the first experimental model, shear deformation of a gel was induced by angular acceleration of its spherical container In the second model the brain of a euthanized rat pup was deformed by indentation of its skull. Tagged magnetic resonance images (MRI) were obtained by gated image acquisition during repeated motion. Harmonic phase (HARP) images corresponding to the spectral peaks of the original tagged MRI were obtained, following procedures proposed by Osman, McVeigh and Prince. Two methods of HARP strain analysis were applied, one based on the displacement of tag line intersections, and the other based on the gradient of harmonic phase. Strain analysis procedures were also validated on simulated images of deformed grids. Results show that it is possible to visualize deformation and to quantify strain efficiently in animal models of closed head injury.  相似文献   

9.

Objective

We aimed to study the maternal retinal microvasculature at mid-trimester and its relationship with subsequent fetal growth and birth size.

Methods

We recruited 732 pregnant women aged 18-46 years in the first trimester with singleton pregnancies. All had retinal photography and fetal scan performed at 26-28 weeks gestation, and subsequent fetal scan at 32-34 weeks gestation. Infant anthropometric measurements were done at birth. Retinal microvasculature was measured using computer software from the retinal photographs.

Results

In multiple linear regression models, each 10 μm narrowing in maternal retinal arteriolar caliber was associated with decreases of 1.36 mm in fetal head circumference at 32-34 weeks gestation, as well as decreases of 1.50 mm and 2.30 mm in infant head circumference and birth length at delivery, respectively. Each standard deviation decrease in maternal retinal arteriolar fractal dimension was associated with decreases of 1.55 mm in fetal head circumference at 32-34 weeks gestation, as well as decreases of 1.08 mm and 46.42 g in infant head circumference and birth weight at delivery, respectively.

Conclusions

Narrower retinal arteriolar caliber and a sparser retinal vascular network in mothers, reflecting a suboptimal uteroplacental microvasculature during mid-pregnancy, were associated with poorer fetal growth and birth size.  相似文献   

10.
ObjectiveTo investigate whether size at birth and rate of fetal growth influence the risk of breast cancer in adulthood.DesignCohort identified from detailed birth records, with 97% follow up.SettingUppsala Academic Hospital, Sweden.Participants5358 singleton females born during 1915-29, alive and traced to the 1960 census.ResultsSize at birth was positively associated with rates of breast cancer in premenopausal women. In women who weighed ⩾4000 g at birth rates of breast cancer were 3.5 times (95% confidence interval 1.3 to 9.3) those in women of similar gestational age who weighed <3000 g at birth. Rates in women in the top fifths of the distributions of birth length and head circumference were 3.4 (1.5 to 7.9) and 4.0 (1.6 to 10.0) times those in the lowest fifths (adjusted for gestational age). The effect of birth weight disappeared after adjustment for birth length or head circumference, whereas the effects of birth length and head circumference remained significant after adjustment for birth weight. For a given size at birth, gestational age was inversely associated with risk (P=0.03 for linear trend). Adjustment for markers of adult risk factors did not affect these findings. Birth size was not associated with rates of breast cancer in postmenopausal women.ConclusionsSize at birth, particularly length and head circumference, is associated with risk of breast cancer in women aged <50 years. Fetal growth rate, as measured by birth size adjusted for gestational age, rather than size at birth may be the aetiologically relevant factor in premenopausal breast cancer.

What is already known on this topic

There is some evidence that birth weight is related to risk of breast cancerThe exact nature of any association and whether it differs at premenopausal and postmenopausal ages is unclearFew studies have examined the effect of other measures of birth size and of gestational age

What this study adds

There are strong positive associations between measures of birth size and rates of breast cancer at premenopausal ages that persisted after adjustment for adult risk factorsFor a given birth size, gestational age was inversely associated with risk, suggesting that the rate of fetal growth may be aetiologically relevant to premenopausal breast cancerThere was no association between birth characteristics and rates of breast cancer at postmenopausal ages  相似文献   

11.
Head injury is the leading cause of fatality and long-term disability for children. Pediatric heads change rapidly in both size and shape during growth, especially for children under 3 years old (YO). To accurately assess the head injury risks for children, it is necessary to understand the geometry of the pediatric head and how morphologic features influence injury causation within the 0–3 YO population. In this study, head CT scans from fifty-six 0–3 YO children were used to develop a statistical model of pediatric skull geometry. Geometric features important for injury prediction, including skull size and shape, skull thickness and suture width, along with their variations among the sample population, were quantified through a series of image and statistical analyses. The size and shape of the pediatric skull change significantly with age and head circumference. The skull thickness and suture width vary with age, head circumference and location, which will have important effects on skull stiffness and injury prediction. The statistical geometry model developed in this study can provide a geometrical basis for future development of child anthropomorphic test devices and pediatric head finite element models.  相似文献   

12.
OBJECTIVE--To determine how fetal growth is related to death from cardiovascular disease in adult life. DESIGN--A follow up study of men born during 1907-24 whose birth weights, head circumferences, and other body measurements were recorded at birth. SETTING--Sheffield, England. SUBJECTS--1586 Men born in the Jessop Hospital. MAIN OUTCOME MEASURE--Death from cardiovascular disease. RESULTS--Standardised mortality ratios for cardiovascular disease fell from 119 in men who weighed 5.5 pounds (2495 g) or less at birth to 74 in men who weighed more than 8.5 pounds (3856 g). The fall was significant for premature cardiovascular deaths up to 65 years of age (chi 2 = 5.0, p = 0.02). Standardised mortality ratios also fell with increasing head circumference (chi 2 = 4.6, p = 0.03) and increasing ponderal index (weight/length3) (chi 2 = 3.8, p = 0.05; for premature deaths chi 2 = 6.0, p = 0.01). They were not related to the duration of gestation. Among men for whom the ratio of placental weight to birth weight was in the highest fifths the standardised mortality ratio was 137. CONCLUSION--These findings show that reduced fetal growth is followed by increased mortality from cardiovascular disease. They suggest that reduction in growth begins early in gestation. They are further evidence that cardiovascular disease originates through programming of the body''s structure, physiology, and metabolism by the environment during fetal life. Maternal nutrition may have an important influence on programming.  相似文献   

13.
14.
A computational head-neck model was developed to test the hypothesis that increases in friction between the head and impact surface will increase head and neck injury risk during near-axial impact. The model consisted of rigid vertebrae interconnected by assemblies of nonlinear springs and dashpots, and a finite element shell model of the skull. For frictionless impact surfaces, the model reproduced the kinematics and kinetics observed in near-axial impacts to cadaveric head-neck specimens. Increases in the coefficient of friction between the head and impact surface over a range from 0.0 to 1.0 resulted in increases of up to 40, 113, 9.8, and 43% in peak post-buckled resultant neck forces, peak moment at the occiput-C1 joint, peak resultant head accelerations, and HIC values, respectively. The most dramatic increases in injury-predicting quantities occurred for COF increases from 0.0 to 0.2, while further COF increases above 0.5 generally produced only nominal changes. These data suggest that safety equipment and impact environments which minimize the friction between the head and impact surface may reduce the risk of head and neck injury in near-vertex head impact.  相似文献   

15.
To evaluate prenatal exposure to arsenic in the general population and its effects on birth size, we conducted a cross-sectional study in Dalian, China. Arsenic concentration in maternal and cord blood was detected by inductively coupled plasma-mass spectrometry and its effects on birth size were analyzed by multivariate analysis and multiple linear regression analysis. Arsenic concentrations in cord blood were significantly lower than those in maternal blood. A significant positive correlation was shown between maternal and cord blood arsenic concentrations. Maternal arsenic concentration was negatively associated with birth weight, height and chest circumference, and fetal arsenic concentration was negatively associated with head circumference. Our results indicate that arsenic exposure at environmental levels in uterus may pose adverse effects on fetal development.  相似文献   

16.
A recently published finite element (FE) head model is modified to consider the viscoelasticity of the meninges, the spongy and compact bone in the skull. The cerebrospinal fluid (CSF) is simulated explicitly as a hydrostatic fluid by using a surface-based fluid modelling method, which allows fluid and structure interaction. It is found that the modified model yields smoother pressure responses in a head impact simulation. The baseline model underestimated the peak von Mises stress in the brain by 15% and the peak principal stress in the skull by 33%. The increase in the maximum principal stress in the skull is mainly caused by the updation of the material's viscoelasticity, and the change in the maximum von Mises stress in the brain is mainly caused by the improvement of the CSF simulation. The study shows that the viscoelasticity of the head tissue should be considered, and that the CSF should be modelled as a fluid, when using FE analysis to study head injury due to impact.  相似文献   

17.
The increasing demand for efficiency in pork production requires great specialization of all sectors involved in this activity. In this context, the development of strategies that could reduce undesirable traits related with negative effects on piglet survival and postnatal growth and development are essential for the pig industry. Currently, special attention is given to variation in birth weight, as some evidences suggest an increased within-litter birth weight variation in modern sows. This variation has been shown to be associated with preweaning mortality, variable weights at weaning and deteriorated growth performance, which results in economic losses and lower efficiency. Therefore, understanding the factors that can influence the events that occur during gestation and that have an impact on the fetal growth and development are important to achieve better efficiency and also to develop strategies that can be used to achieve increased within-litter uniformity of piglet birth weight. This study concludes that even at a given placental size, fetal growth may vary because of differences in placental vascularization and efficiency. Feeding extra feed or energy during late gestation only marginally improves birth weight, and positive effects are not consistent between different studies. The detrimental effects of protein restriction on fetal growth during early gestation may be due to altered placental and endometrial angiogenesis and growth, which leads to a reduction in placental-fetal blood flow, nutrient supply from mother to the fetuses and ultimately to fetal growth retardation. The number of studies that attempted to influence within-litter birth weight variation by means of sow nutrition during gestation is limited. Therefore, more research concerning sow nutrition during gestation associated with the provision of balanced diets to meet requirements of the sows and fetuses are still required. This knowledge may subsequently provide starting points for the design of nutritional strategies that can influence within-litter birth variation.  相似文献   

18.
19.

Background

Intrauterine balloon aortic valvuloplasty (IUBAV) has been used for critical aortic stenosis. However, it is necessary to determine the fetal impairments such as preterm birth after this approach and to find a way to prevent or reduce them.

Methods

In the present study, we evaluated the therapeutic value of indomethacin (IDM) and dexamethasone (DXS) on reducing the preterm birth rate in experimental goats after IUBAV.

Results

Our results indicated that the administration of IDM/DXS significantly reduced the rate of premature birth. IDM/DXS treatment led to preservation of myocardial ultrastructure with less damage, and amelioration of the fetal and placental circulation. Furthermore, we found that norepinephrine (NE) level was positively associated with the degree of myocardial damage. IDM/DXS administration led to a significant decrease of operation-induced increase of NE levels, which may be associated with the protective effects of IDM/DXS. Lastly, we found that the administration of IDM/DXS did not induce the risk of ductus arteriosus closure or slow down fetal growth.

Conclusions

Our results indicate that IDM/DXS promotes a better gestational outcome at least partially by reducing stress response during and after the operation of IUBAV in the goat model. IDM/DXS may be a useful application in human patients during IUBAV intervention.  相似文献   

20.
The “fetal origins” hypothesis suggests that fetal conditions not only affect birth characteristics such as birth weight and gestational age, but also have lifelong health implications. Despite widespread interest in this hypothesis, few methodological advances have been proposed to improve the measurement and modeling of fetal conditions. A Statistics in Medicine paper by Bollen, Noble, and Adair examined favorable fetal growth conditions (FFGC) as a latent variable. Their study of Filipino children from Cebu provided evidence consistent with treating FFGC as a latent variable that largely mediates the effects of mother’s characteristics on birth weight, birth length, and gestational age. This innovative method may have widespread utility, but only if the model applies equally well across diverse settings. Our study assesses whether the FFGC model of Cebu replicates and generalizes to a very different population of children from North Carolina (N = 705) and Pennsylvania (N = 494). Using a series of structural equation models, we find that key features of the Cebu analysis replicate and generalize while we also highlight differences between these studies. Our results support treating fetal conditions as a latent variable when researchers test the fetal origins hypothesis. In addition to contributing to the substantive literature on measuring fetal conditions, we also discuss the meaning and challenges involved in replicating prior research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号