首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in two genes, PKD1 and PKD2, which encode polycystin‐1 (PC1) and polycystin‐2 (PC2), respectively. Earlier work has shown that PC1 and PC2 assemble into a polycystin complex implicated in kidney morphogenesis. PC2 also assembles into homomers of uncertain functional significance. However, little is known about the molecular mechanisms that direct polycystin complex assembly and specify its functions. We have identified a coiled coil in the C‐terminus of PC2 that functions as a homodimerization domain essential for PC1 binding but not for its self‐oligomerization. Dimerization‐defective PC2 mutants were unable to reconstitute PC1/PC2 complexes either at the plasma membrane (PM) or at PM‐endoplasmic reticulum (ER) junctions but could still function as ER Ca2+‐release channels. Expression of dimerization‐defective PC2 mutants in zebrafish resulted in a cystic phenotype but had lesser effects on organ laterality. We conclude that C‐terminal dimerization of PC2 specifies the formation of polycystin complexes but not formation of ER‐localized PC2 channels. Mutations that affect PC2 C‐terminal homo‐ and heteromerization are the likely molecular basis of cyst formation in ADPKD.  相似文献   

2.
Although several protein-protein interactions have been reported between transient receptor potential (TRP) channels, they are all known to occur exclusively between members of the same group. The only intergroup interaction described so far is that of TRPP2 and TRPC1; however, the significance of this interaction is unknown. Here, we show that TRPP2 and TRPC1 assemble to form a channel with a unique constellation of new and TRPP2/TRPC1-specific properties. TRPP2/TRPC1 is activated in response to G-protein-coupled receptor activation and shows a pattern of single-channel conductance, amiloride sensitivity and ion permeability distinct from that of TRPP2 or TRPC1 alone. Native TRPP2/TRPC1 activity is shown in kidney cells by complementary gain-of-function and loss-of-function experiments, and its existence under physiological conditions is supported by colocalization at the primary cilium and by co-immunoprecipitation from kidney membranes. Identification of the heteromultimeric TRPP2/TRPC1 channel has implications in mechanosensation and cilium-based Ca(2+) signalling.  相似文献   

3.
The transient receptor potential channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCbeta2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1-positive cells are immunoreactive for neural cell adhesion molecule, serotonin, PGP-9.5 (ubiquitin carboxy-terminal transferase), and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about "sour", but have little or no role in transmission of taste information of other taste qualities.  相似文献   

4.
Polycystic kidney disease 1-like 3 (Pkd1l3) is expressed specifically in sour-sensing type III taste cells that have synaptic contacts with afferent nerve fibers in circumvallate (CvP) and foliate papillae (FoP) located in the posterior region of the tongue, although not in fungiform papillae (FuP) or the palate. To visualize the gustatory neural pathways that originate from type III taste cells in CvP and FoP, we established transgenic mouse lines that express the transneuronal tracer wheat germ agglutinin (WGA) under the control of the mouse Pkd1l3 gene promoter/enhancer. The WGA transgene was accurately expressed in Pkd1l3-expressing type III taste cells in CvP and FoP. Punctate WGA protein signals appeared to be detected specifically in type III taste cells but not in other types of taste cells. WGA protein was transferred primarily to a subset of neurons located in close proximity to the glossopharyngeal (GL) nerve bundles in the nodose/petrosal ganglion (NPG). WGA signals were also observed in a small population of neurons in the geniculate ganglion (GG). This result demonstrates the anatomical connection between taste receptor cells (TRCs) in the FoP and the chorda tympani (CT) nerves. WGA protein was further conveyed to neurons in a rostro-central subdivision of the nucleus of the solitary tract (NST). These findings demonstrate that the approximately 10?kb 5'-flanking region of the mouse Pkd1l3 gene functions as a type III taste cell-specific promoter/enhancer. In addition, experiments using the pkd1l3-WGA transgenic mice reveal a sour gustatory pathway that originates from TRCs in the posterior region of the tongue.  相似文献   

5.
Based on patch clamp data on the ionic currents of rat taste receptor cells, a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components, including voltage-gated Na+ currents and outward delayed rectifier K+ currents. Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants. The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed. Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.  相似文献   

6.
In the mammalian retina, cone photoreceptors efficiently adapt to changing background light intensity and, therefore, are able to signal small differences in luminance between objects and backgrounds, even when the absolute intensity of the background changes over five to six orders of magnitude. Mammalian rod photoreceptors, in contrast, adapt very little and only at intensities that nearly saturate the amplitude of their photoresponse. In search of a molecular explanation for this observation we assessed Ca2+-dependent modulation of ligand sensitivity in cyclic GMP-gated (CNG) ion channels of intact mammalian rods and cones. Solitary photoreceptors were isolated by gentle proteolysis of ground squirrel retina. Rods and cones were distinguished by whether or not their outer segments bind PNA lectin. We measured membrane currents under voltage-clamp in photoreceptors loaded with Diazo-2, a caged Ca2+ chelator, and fixed concentrations of 8Br-cGMP. At 600 nM free cytoplasmic Ca2+ the midpoint of the cone CNG channels sensitivity to 8BrcGMP, 8BrcGMPK1/2, is approximately 2.3 microM. The ligand sensitivity is less in rod than in cone channels. Instantly decreasing cytoplasmic Ca2+ to <30 nM activates a large inward membrane current in cones, but not in rods. Current activation arises from a Ca2+ -dependent modulation of cone CNG channels, presumably because of an increase in their affinity to the cyclic nucleotide. The time course of current activation is temperature dependent; it is well described by a single exponential process of approximately 480 ms time constant at 20-21 degrees C and 138 ms at 32 degrees C. The absence of detectable Ca2+-dependent CNG current modulation in intact rods, in view of the known channel modulation by calmodulin in-vitro, affirms the modulation in intact rods may only occur at low Ca2+ concentrations, those expected at intensities that nearly saturate the rod photoresponse. The correspondence between Ca2+ dependence of CNG modulation and the ability to light adapt suggest these events are correlated in photoreceptors.  相似文献   

7.
Polycystin-2, the protein mutated in type 2 autosomal dominant polycystic kidney disease, is an integral transmembrane protein with nonselective cation channel activity. Here we report on the sea urchin sperm homolog of polycystin-2 (suPC2). Like other polycystin-2 family members, suPC2 is a six-pass transmembrane protein containing C-terminal cytoplasmic EF hand and coiled-coil domains. The protein localizes exclusively to the plasma membrane over the sperm acrosomal vesicle. This localization coincides with the previously reported localization of the sea urchin PC1 homolog, suREJ3. Co-immunoprecipitation shows that suPC2 and suREJ3 are associated in the membrane. The location of suPC2 suggests that it may function as a cation channel mediating the sperm acrosome reaction. The low cation selectivity of PC2 channels would explain data indicating that Na(+) and Ca(2+) may enter sea urchin sperm through the same channel during the acrosome reaction.  相似文献   

8.
To identify genes important for taste receptor cell function, we analyzed the sequences and expression patterns of clones isolated from a mouse taste receptor cell-enriched cDNA library. Here, we report the analyses of two novel genes, Gpr113 and Trcg1. Gpr113 encodes a G-protein-coupled receptor belonging to family 2B, members of which are characterized by having long N-terminal, extracellular domains. The predicted N-terminal extracellular domain of GPR113 contains 696 amino acids with two functional domains, a peptide hormone-binding domain and a G-protein-coupled receptor proteolytic site. Expression analyses indicate that Gpr113 expression is highly restricted to a subset of taste receptor cells. TRCG1 is also selectively expressed in a subset of taste receptor cells. Trcg1 is alternatively spliced and encodes Trcg1 isoforms of 209 and 825 amino acids. BLAST searches of genomic sequences indicate that a putative homolog of Trcg1 resides on human chromosome 15q22.  相似文献   

9.
The expression of D1 dopamine (DA) receptor gene is regulated during development, aging, and pathophysiology. The extracellular factors and signaling mechanisms that modulate the expression of D1 DA receptor have not been well characterized. Here, we present novel evidence that endogenous D1 DA receptor expression is inhibited by extracellular cAMP in the Cath.A Derived (CAD) catecholaminergic neuronal cell line. CAD cells express the multi-drug resistance protein 5 transporters and secrete cAMP. Addition of exogenous cAMP decreases D1 receptor mRNA and protein greater than fourfold in 24 h. The cAMP-induced decrease of D1 receptor mRNA levels is blocked by cGMP and by 1,3-dipropyl-8-(p-sulfo-phenyl)xanthine, an inhibitor of ecto-phosphodiestrase. Extracellular AMP, a metabolite of cAMP, also independently decreased D1 receptor mRNA levels. Inhibitors of ecto-nucleotidases, alpha,beta-methyleneadenosine 5'-di-phosphate and GMP, completely blocked the decrease of D1 receptor mRNA by extracellular cAMP, but only partially blocked the decrease induced by extracellular AMP. Levamisole, an inhibitor of tissue non-specific alkaline phosphatase, completely blocked the AMP-induced decrease of D1 receptor mRNA. The extracellular cAMP, AMP, and adenosine (ADO)-induced decrease in D1 receptor mRNA expression are mediated by A2a ADO receptor subtype. The results suggest a novel molecular mechanism linking activation of A2a ADO receptors with inhibition of D1 DA receptor expression.  相似文献   

10.
Docking proteins are substrates of tyrosine kinases and function in the recruitment and assembly of specific signal transduction molecules. Here we found that p62dok family members act as substrates for the c-Ret receptor tyrosine kinase. In addition to dok-1, dok-2, and dok-3, we identified two new family members, dok-4 and dok-5, that can directly associate with Y1062 of c-Ret. Dok-4 and dok-5 constitute a subgroup of dok family members that is coexpressed with c-Ret in various neuronal tissues. Activated c-Ret promotes neurite outgrowth of PC12 cells; for this activity, Y1062 in c-Ret is essential. c-Ret/dok fusion proteins, in which Y1062 of c-Ret is deleted and replaced by the sequences of dok-4 or dok-5, induce ligand-dependent axonal outgrowth of PC12 cells, whereas a c-Ret fusion containing dok-2 sequences does not elicit this response. Dok-4 and dok-5 do not associate with rasGAP or Nck, in contrast to p62dok and dok-2. Moreover, dok-4 and dok-5 enhance c-Ret-dependent activation of mitogen-activated protein kinase. Thus, we have identified a subclass of p62dok proteins that are putative links with downstream effectors of c-Ret in neuronal differentiation.  相似文献   

11.
Organ formation at shoot and flower meristems in plants requires the maintenance of a population of centrally located stem cells and the differentiation of peripherally located daughter cells. The CLAVATA (CLV) gene products in Arabidopsis, including the CLV1 receptor-kinase, regulate this process by promoting the differentiation of stem cells on the meristem flanks. Here, we have analyzed the developmental roles of the CLV1-related BAM1 (derived from barely any meristem 1), BAM2 and BAM3 receptor-like kinases. Loss-of-function alleles of these receptors lead to phenotypes consistent with the loss of stem cells at the shoot and flower meristem, suggesting that their developmental role is opposite to that of CLV1. These closely related receptors are further distinguished from CLV1, whose expression and function is highly specific, by having broad expression patterns and multiple developmental roles. These include a requirement for BAM1, BAM2 and BAM3 in the development of high-ordered vascular strands within the leaf and a correlated control of leaf shape, size and symmetry. In addition, BAM1, BAM2 and BAM3 are required for male gametophyte development, as well as ovule specification and function. Significantly, the differing roles of CLV1 and BAM receptors in meristem and organ development are largely driven by differences in expression patterns.  相似文献   

12.
The polycystic kidney disease 1-like 3 (PKD1L3)–polycystic kidney disease 2-like 1 (PKD2L1) complex functions as a Ca2+-permeable, non-selective cation channel that is activated by acid and its subsequent removal; this is called an off-response. In this study, we identified a single aspartic residue in PKD2L1 that is responsible for the Ca2+ permeation of the PKD1L3/PKD2L1 complex. Calcium imaging analysis using point mutants of negatively charged amino acids present in the putative pore regions of PKD1L3 and PKD2L1 revealed that neutralization of the aspartic residue in PKD2L1 (D523N), which is conserved among PKD2 family members, abolished Ca2+ permeation, despite robust cell surface expression. In contrast, neutralization of the other negatively charged residues of PKD1L3 (D2049N and E2072Q) and PKD2L1 (D525N and D530N) as well as substitution of Asp523 with a glutamate residue (D523E) had little effect on Ca2+ permeation properties. These results demonstrate that Asp523 in PKD2L1 is a key determinant of Ca2+ permeation into the PKD1L3/PKD2L1 complex and that PKD2L1 contributes to forming the pore of the PKD1L3/PKD2L1 channel.  相似文献   

13.
The gustatory system is essential for almost all animals. However, the signal transduction mechanisms have not yet been fully elucidated. We isolated labellar chemosensilla from blowfly, Phormia regina, and purified calcium binding proteins from the water soluble fraction. The most abundant calcium-binding protein was calmodulin. To investigate the role of calmodulin in taste transduction, electrophysiological responses were recorded with the calmodulin inhibitor, W-7. When we stimulated the labellar chemosensillum with sucrose plus W-7, a dose-dependent decrease of impulse frequency was observed when the concentration was <50 microM. In addition, when W-7 at 50 microM or higher concentration was added, an initial short-term impulse generation from the sugar receptor cell was observed, but this was followed by a silent period. When the sensillum was stimulated with W-7 plus a membrane-permeable cGMP analog, dibtyryl-cGMP or 8-bromo-cGMP, impulses of the sugar receptor cell were induced but the frequency was decreased. By the sidewall-recording method, we observed that the receptor potential induced by sucrose stimulation was decreased by W-7 in the sugar receptor cell, and corresponded with a disappearance of impulses. These data strongly suggest that the cGMP-gated channel generating receptor potential in the sugar receptor cell requires calmodulin for its gating.  相似文献   

14.
Characean internodal cells generate receptor potential (ΔE m) in response to mechanical stimuli. Upon a long-lasting stimulus, the cells generated ΔE m at the moment of both compression and decompression, and the amplitude of ΔE m at the moment of decompression, (ΔE m)E, was larger than that at compression. The long-lasting stimulus caused a membrane deformation (ΔD m) having two components, a rapid one, (ΔD m)rapid, at the moment of compression and a slower one, (ΔD m)slow, during the long-lasting compression. We assumed that (ΔD m)slow might have some causal relation with the larger ΔE m at (ΔE m)E. We treated internodal cells with either HgCl2 or ZnCl2, water channel inhibitors, to decrease (ΔD m)slow. Both inhibitors attenuated (ΔD m)slow during compression. Cells treated with HgCl2 generated smaller (ΔE m)E compared to nontreated cells. On the other hand, cells treated with ZnCl2 never attenuated (ΔE m)E but, rather, amplified it. Thus, the amplitude of (ΔD m)slow did not always show tight correlation with the amplitude of (ΔE m)E. Furthermore, when a constant deformation was applied to an internodal cell in a medium with higher or lower osmotic value, a cell having higher turgor always showed a larger (ΔE m)E. Thus, we concluded that changes in tension at the membrane may be the most important factor to induce activation of mechanosensitive Ca2+ channel.  相似文献   

15.
Gurmarin (Gur) is a peptide that selectively inhibits responses of the chorda tympani (CT) nerve to sweet compounds in rodents. In mice, the sweet-suppressing effect of Gur differs among strains. The inhibitory effect of Gur is clearly observed in C57BL/6 mice, but only slightly, if at all, in BALB/c mice. These two mouse strains possess different alleles of the sweet receptor gene, Sac (Tas1r3) (taster genotype for C57BL/6 and non-taster genotype for BALB/c mice), suggesting that polymorphisms in the gene may account for differential sensitivity to Gur. To investigate this possibility, we examined the effect of Gur in another Tas1r3 non-taster strain, 129 X 1/Sv mice. The results indicated that unlike non-taster BALB/c mice but similar to taster C57BL/6 mice, 129 X 1/Sv mice exhibited significant inhibition of CT responses to various sweet compounds by Gur. This suggests that the mouse strain difference in the Gur inhibition of sweet responses of the CT nerve may not be associated with polymorphisms of Tas1r3.  相似文献   

16.
Alzheimer's disease (AD) is the most common form of dementia and displays the characteristics of chronic neurodegenerative disorders; amyloid plaques (AP) that contain amyloid β‐protein (Aβ) accumulate in AD, which is also characterized by tau phosphorylation. Epidemiological evidence has demonstrated that long‐term treatment with nonsteroidal anti‐inflammatory drugs (NSAIDs) markedly reduces the risk of AD by inhibiting the expression of cyclooxygenase 2 (COX‐2). Although the levels of COX‐2 and its metabolic product prostaglandin (PG)E2 are elevated in the brain of AD patients, the mechanisms for the development of AD remain unknown. Using human‐ or mouse‐derived glioblastoma and neuroblastoma cell lines as model systems, we delineated the signaling pathways by which COX‐2 mediates the reciprocal regulation of interleukin‐1β (IL‐1β) and Aβ between glial and neuron cells. In glioblastoma cells, COX‐2 regulates the synthesis of IL‐1β in a PGE2‐dependent manner. Moreover, COX‐2‐derived PGE2 signals the activation of the PI3‐K/AKT and PKA/CREB pathways via cyclic AMP; these pathways transactivate the NF‐κB p65 subunit via phosphorylation at Ser 536 and Ser 276, leading to IL‐1β synthesis. The secretion of IL‐1β from glioblastoma cells in turn stimulates the expression of COX‐2 in human or mouse neuroblastoma cells. Similar regulatory mechanisms were found for the COX‐2 regulation of BACE‐1 expression in neuroblastoma cells. More importantly, Aβ deposition mediated the inflammatory response of glial cells via inducing the expression of COX‐2 in glioblastoma cells. These findings not only provide new insights into the mechanisms of COX‐2‐induced AD but also initially define the therapeutic targets of AD.  相似文献   

17.
The interaction of avermectin B1a (AVM) with the γ-aminobutyric acid (GABA) receptor of rat brain was studied using radioactive ligand binding and tracer ion flux assays. Avermectin potentiated the binding of [3H]flunitrazepam and inhibited the binding of both [3H]muscimol and [35S]t-butylbicyclo-phosphorothionate to the GABAA receptor. Inhibition of muscimol binding by AVM suggested competitive displacement. Two kinds of 36chloride (Cl) flux were studied. The 36Cl efflux from preloaded microsacs was potentiated by AVM and was highly inhibited by the Cl-channel blocker 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS). However, it was not potentiated by GABA nor was it sensitive to the convulsants picrotoxin or bicuculline. On the other hand, 36Cl-influx measurement in a different microsac preparation of rat brain was very sensitive to GABA and other GABA-ergic drugs. Avermectin induced 36Cl influx into these microsacs in a dose–dependent manner, but to only 35% of the maximal influx induced by GABA. The AVM-induced 36Cl influx was totally blocked by bicuculline. It is suggested that AVM opens the GABAA-receptor Cl channel by binding to the GABA recognition site and acting as a partial receptor agonist, and also opens a voltage–dependent Cl channel which is totally insensitive to GABA but is very sensitive to DIDS.  相似文献   

18.
Cold-adapted deseasin MCP-01 is a novel type subtilase with a multidomain structure containing a catalytic domain, a linker, a P_proprotein domain, and a PKD domain. Its autolysis was pH-dependent due to its flexible structure. N-terminal sequence analysis of the autolytic peptides revealed four autolytic sites in the catalytic domain. Three of these are in the same loops as mesophilic subtilases and one is unlike anything previously reported. Two autolytic sites were deduced in its linker and three in its P_proprotein domain, indicating the linker and the P_proprotein domain are flexible and susceptible to proteolytic attacks. Therefore, during MCP-01 autolysis, the linker and the P_proprotein domain of MCP-01 were easily attacked by proteolysis, resulting in cleavage of the C-terminal region. At the same time, some autolytic sites in the surface loops of the catalytic domain were cleaved. This is the first report describing the autolytic mechanism of a multidomain subtilase.  相似文献   

19.
The activation of extracellular signal-regulated kinases (ERK1/2) has been associated with specific outcomes. Sustained activation of ERK1/2 by nerve growth factor (NGF) is associated with translocation of ERKs to the nucleus of PC12 cells and precedes their differentiation into sympathetic-like neurons whereas transient activation by epidermal growth factor (EGF) leads to cell proliferation. It was demonstrated that different growth factors initiating the same cellular signaling pathways may lead to the different cell destiny, either to proliferation or to the inhibition of mitogenesis and apoptosis. Thus, further investigation on kinetic differences in activation of certain signal cascades in different cell types by biologically different agents are necessary for understanding the mechanisms as to how cells make a choice between proliferation and differentiation.It was reported that chitinase 3-like 1 (CHI3L1) protein promotes the growth of human synovial cells as well as skin and fetal lung fibroblasts similarly to insulin-like growth factor 1 (IGF1). Both are involved in mediating the mitogenic response through the signal-regulated kinases ERK1/2. In addition, CHI3L1 which is highly expressed in different tumors including glioblastomas possesses oncogenic properties. As we found earlier, chitinase 3-like 2 (CHI3L2) most closely related to human CHI3L1 also showed increased expression in glial tumors at both the RNA and protein levels and stimulated the activation of the MAPK pathway through phosphorylation of ERK1/2 in 293 and U87 MG cells. The work described here demonstrates the influence of CHI3L2 and CHI3L1 on the duration of MAPK cellular signaling and phosphorylated ERK1/2 translocation to the nucleus. In contrast to the activation of ERK1/2 phosphorylation by CHI3L1 that leads to a proliferative signal (similar to the EGF effect in PC12 cells), activation of ERK1/2 phosphorylation by CHI3L2 (similar to NGF) inhibits cell mitogenesis and proliferation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号