首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
L Klampfer  J Zhang  S D Nimer 《Cytokine》1999,11(11):849-855
Cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-3 promote the survival and stimulate the proliferation of haematopoietic cells. Using the GM-CSF-dependent TF-1 myeloid leukaemia cell line, the authors show that the endogenous levels of BCL-2 and MCL-1 are downregulated upon GM-CSF withdrawal, whereas the levels of BCL-x(L)and Bax are unchanged. Re-exposure of growth factor deprived cells to GM-CSF resulted in an early and transient increase in MCL-1 expression, and prolonged induction of BCL-2, which prevented apoptosis. In contrast, the expression of BCL-2 and MCL-1 were not modulated during TPA-induced differentiation of TF-1 cells, which was followed by apoptosis despite the presence of GM-CSF. TF-1 cells overexpressing BCL-2 or MCL-1 underwent delayed apoptosis upon growth factor withdrawal, but displayed no impaired apoptosis in response to TPA. Erythropoietin (Epo) induced the expression of BCL-2 and MCL-1 protein in TF-1 cells, however it did not support their long term proliferation, further demonstrating that upregulation of these anti-apoptotic genes is insufficient for the long term proliferation of TF-1 cells.  相似文献   

3.
Erythropoietin (Epo) is crucial for promoting the survival, proliferation, and differentiation of mammalian erythroid progenitors. The central role played by tyrosine phosphorylation of erythropoietin receptor (EpoR) in Epo-cell activation has focused attention on protein tyrosine phosphatases (PTPs) as candidates implicated in the pathogenesis of the resistance to therapy with human recombinant Epo. Prototypic member of the PTP family is PTP1B, which has been implicated in the regulation of EpoR signaling pathways. In previous reports we have shown that PTP1B is reciprocally modulated by Epo in undifferentiated UT-7 cell line. However, no information is available with respect to the modulation of this phosphatase in non-Epo depending cells or at late stages of erythroid differentiation. In order to investigate these issues we induced UT-7 cells to differentiate and studied their PTP1B expression pattern. Simultaneous observations were performed in TF-1 cells which can be cultured either with GM-CSF, IL-3 or Epo. We found that Epo induced PTP1B cleaveage in TF-1 and differentiated UT-7 cells. This pattern of PTP1B modulation may be due to an increased TRPC3/TRPC6 expression ratio which could explain the larger and sustained calcium response to Epo and calpain activation in Epo treated TF-1 and differentiated UT-7 cells.  相似文献   

4.
The involvement of MAPK pathways in differentiation, proliferation and survival was investigated by comparing Epo and GM-CSF signalling in human factor-dependent myeloerythroid TF-1 cells with abnormal Epo-R. GM-CSF withdrawal induced cell-cycle arrest and apoptosis accompanied by increased caspase-3 activity, DNA degradation and reduced expression of the antiapoptotic Bcl-2 and Bcl-xl proteins. Readministration of GM-CSF but not Epo reversed these processes and induced proliferation. The GM-CSF promoted cell survival and proliferation correlated with MEK-1 dependent ERK1/2, Elk-1 and CREB phosphorylation and Egr-1, c-Fos expression as well as with increased STAT-5, AP-1, c-Myb and NF-kappaB DNA-binding. In contrast, Epo failed to activate the Raf-1/ERK1/2 MAPK pathway or to induce Egr-1 and/or c-Fos expression, while it induced erythroid differentiation in GM-CSF-deprived cells. In addition, the Epo-induced haemoglobin production was inhibited in the presence of GM-CSF. These results demonstrate that the activation of MAPK cascade is not necessary for Epo-induced haemoglobin production in TF-1 cells and suggest a negative cross-talk between the signalling of GM-CSF-stimulated cell proliferation and Epo-induced erythroid differentiation.  相似文献   

5.
A multipotent immature myeloid cell population was produced from a basic fibroblast growth factor (bFGF)-dependent hematopoietic stem cell line, A-6, when cultured with stem cell factor (SCF) replacing bFGF. Those cells were positive for stem cell markers, c-kit and CD34, and a myeloid cell marker, F4/80. Some cell fractions were also positive for Mac-1, a macrophage marker or Gr-1, a granulocytic maker, but negative for an erythroid marker TER119. They also showed the expression of mRNA for the myeloid-specific PU.1 but did not that for the erythroid-specific GATA-1. Among various cytokines, interleukin-3 (IL-3) induced erythroid precursor cells that expressed the erythroid-specific GATA-1 and beta-major globin. The quantitative analysis showed that erythroid precursor cells were newly produced from the immature myeloid cells by cultivation with IL-3. SCF and IL-3 induced stepwise generation of erythroid precursor cells from an A-6 hematopoietic stem cell line.  相似文献   

6.
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 play a key role in allergic inflammation. They mediate their effect via receptors that consist of two distinct subunits, a cytokine-specific alpha subunit and a common beta subunit (betac) that transduces cell signaling. We sought to down-regulate the biologic activities of GM-CSF, IL-3, and IL-5 simultaneously by inhibiting betac mRNA expression with antisense technology. Experiments were performed with TF-1 cells (a human erythroleukemia cell line expressing GM-CSF, IL-3, and IL-5 receptors, which proliferates in response to these cytokines), monocytic U937 cells, which require these cytokines for differentiation, and purified human eosinophils. Cells were treated with antisense phosphorothioate oligodeoxynucleotides (ODN) targeting betac mRNA. In contrast to nontreated cells and cells treated by sense or mismatched ODN, antisense ODN inhibited betac mRNA expression and significantly decreased the level of cell surface betac protein expression on TF-1 and U937 cells. Receptor function was also affected. Antisense ODN were able to inhibit TF-1 cell proliferation in vitro in the presence of GM-CSF, IL-3, or IL-5 in the culture medium and eosinophil survival. We suggest that antisense ODN against betac may provide a new therapeutic alternative for the treatment of neoplastic or allergic diseases associated with eosinophilic inflammation.  相似文献   

7.
Interleukin-1 is a pleiotropic cytokine that has been shown previously to suppress active cell death in T cells. Two cell surface receptors for interleukin-1 have been identified and their genes cloned, type I (IL-RI) and type II (IL-RII) receptors. In the present study, we provide evidence for a role of interleukin-1β in the short-term suppression of cell death both in purified CD34+/Lin bone marrow precursors and in the GM-CSF dependent cell line TF-1. Several lines of evidence suggest that the biologic effects of IL-1β are mediated by activation of type I IL-1 receptors (IL-1RI) and induction of GM-CSF production. First, neutralizing antibodies to IL-1RI but not IL-1RII drastically abrogated cell survival induced by IL-1β in CD34+/Lin cells and TF-1 cells. Second, neutralizing antibodies against GM-CSF abrogate cell survival supported by IL-1 both in CD34+/Lin bone marrow cells and in the cell line TF-1. Furthermore, exposure of TF-1 cells to IL-1β results in a transient accumulation of GM-CSF mRNA, with a peak at 3 h, which was dramatically decreased by neutralizing anti-IL-1RI antibodies. In contrast, neutralizing anti-IL-1RII did not change the IL-1 induced cell survival of bone marrow cells and was followed by a paradoxical increase in viable cell numbers, in c-myc and c-myb mRNA accumulation in IL-1 treated TF-1 cells. Together our results indicate that the increase in cell survival induced IL-1β occurs through binding to IL-1RI and the subsequent production of endogenous GM-CSF. IL-1RII does not appear to be involved in signal transduction in primary CD34+/Lin cells but could negatively regulate the response to IL-1β in TF-1 cells. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) are hematopoietic growth factors which stimulate the proliferation and differentiation of myeloid progenitor cells. There is a considerable degree of overlap in target cell specificity and the functional effects of GM-CSF and IL-3. GM-CSF and IL-3 induce a nearly identical pattern of protein-tyrosine phosphorylation in certain cell lines, although their receptors have no kinase domains. Furthermore, their receptor complexes share one subunit (designated as beta). These observations raise the possibility that GM-CSF and IL-3 have a common signaling pathway. Here we show that both GM-CSF and IL-3 induce tyrosine phosphorylation and kinase activity of the c-fps/fes proto-oncogene product (p92c-fes), a non-receptor protein-tyrosine kinase, in a human erythro-leukemia cell line, TF-1, which requires GM-CSF or IL-3 for growth. In addition, GM-CSF induces physical association between p92c-fes and the beta chain of the GM-CSF receptor. p92c-fes is therefore a possible signal transducer of several hematopoietic growth factors including GM-CSF and IL-3 through the common beta chain.  相似文献   

9.
10.
11.
12.
DiFalco MR  Congote LF 《Cytokine》2002,18(1):51-60
Azidothymidine (AZT)-induced anemia in mice can be reversed by the administration of IGF-IL-3 (fusion protein of insulin-like growth factor II (IGF II) and interleukin 3). Although interleukin 3 (IL-3) and erythropoietin (EPO) are known to act synergistically on hematopoietic cell proliferation in vitro, injection of IGF-IL-3 and EPO in AZT-treated mice resulted in a reduction of red cells and an increase of plasma EPO levels as compared to animals treated with IGF-IL-3 or EPO alone. We tested the hypothesis that the antagonistic effect of IL-3 and EPO on erythroid cells may be mediated by endothelial cells. Bovine liver erythroid cells were cultured on monolayers of human bone marrow endothelial cells previously treated with EPO and IGF-IL-3. There was a significant reduction of thymidine incorporation into both erythroid and endothelial cells in cultures pre-treated with IGF-IL-3 and EPO. Endothelial cell culture supernatants separated by ultrafiltration and ultracentrifugation from cells treated with EPO and IL-3 significantly reduced thymidine incorporation into erythroid cells as compared to identical fractions obtained from the media of cells cultured with EPO alone. These results suggest that endothelial cells treated simultaneously with EPO and IL-3 have a negative effect on erythroid cell production.  相似文献   

13.
Cultured human monocytes undergo a process of differentiation and maturation lasting 5 to 10 days that ultimately leads to the appearance of large macrophage-like cells. This differentiation is growth factor dependent: of all the cytokines tested, only macrophage colony-stimulating factor (M-CSF), granulocyte/macrophage-CSF (GM-CSF), and IL-3 proved capable of supporting the differentiation and the long term survival of the macrophage-like cells. Although all three cytokines yield cells with macrophage characteristics, cells developed in M-CSF have features distinct from those matured in either IL-3 or GM-CSF. At the morphologic level, the M-CSF-supported monocyte cultures yield elongated, spindle-shaped cells whereas those supported with IL-3 or GM-CSF yielded round cells with distinct nuclei. All three macrophage populations expressed similar levels of HLA-DR, CD11b, and CD11c, but the M-CSF-treated cultures yielded more CD14+ and CD16+ (Fc gamma RIII) cells. All three cell populations developed capacity for antibody-dependent cellular cytotoxicity (ADCC) as well as antibody-independent cytotoxicity with peak activity achieved after 8 to 12 days in culture. ADCC capacity developed earliest and the level of activity was usually greatest in the M-CSF-treated cultures, possibly correlating with the higher level of expression of CD16. Our findings indicate that any of these cytokines, but particularly M-CSF, may be useful clinically in enhancing the tumoricidal capacity of tumor-specific mAb through augmentation of macrophage capacity for ADCC.  相似文献   

14.
We have recently demonstrated that transforming growth factor (TGF)-beta 1 and TGF-beta 2 are potent inhibitors of the growth and differentiation of murine and human hematopoietic cells. The proliferation of primary unfractionated murine bone marrow by interleukin-3 (IL-3) and human bone marrow by IL-3 or granulocyte/macrophage colony-stimulating factor (GM-CSF) was inhibited by TGF-beta 1 and TGF-beta 2, while the proliferation of murine bone marrow by GM-CSF or murine and human marrow with G-CSF was not inhibited. Mouse and human hematopoietic colony formation was differentially affected by TGF-beta 1. In particular, CFU-GM, CFU-GEMM, BFU-E, and HPP-CFC, the most immature colonies, were inhibited by TGF-beta 1, whereas the more differentiated unipotent CFU-G, CFU-M, and CFU-E were not affected. TGF-beta 1 inhibited IL-3-induced growth of murine leukemic cell lines within 24 h, after which the cells were still viable. Subsequent removal of the TGF-beta 1 results in the resumption of normal growth. TGF-beta 1 inhibited the growth of factor-dependent NFS-60 cells in a dose-dependent manner in response to IL-3, GM-CSF, G-CSF, CSF-1, IL-4, or IL-6. TGF-beta 1 inhibited the growth of a variety of murine and human myeloid leukemias, while erythroid and macrophage leukemias were insensitive. Lymphoid leukemias, whose normal cellular counterparts were markedly inhibited by TGF-beta, were also resistant to TGF-beta 1 inhibition. These leukemic cells have no detectable TGF-beta 1 receptors on their cell surface. Last, TGF-beta 1 directly inhibited the growth of isolated Thy-1-positive progenitor cells. Thus, TGF-beta may be an important modulator of normal and leukemic hematopoietic cell growth.  相似文献   

15.
Erythropoietin (Epo), granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor- (G-CSF) dependent cell lines have been derived from the murine hematopoietic cell line 32D with a selection strategy involving the culture of the cells in FBS-deprived medium supplemented only with pure recombinant Epo, GM-CSF, or G-CSF. The cells retain the diploid karyotype of the original 32D clone, do not grow in the absence of exogenous growth factor, and do not induce tumors when injected into syngeneic recipients. The morphology of the Epo-dependent cell lines (32D Epo1, -2, and -3) was heterogeneous and evolved with passage. The percent of differentiated cells also was a function of the cell line investigated. Benzidine-positive cells ranged from 1-2% (32D Epo3) to 50-60% (32D Epo1). These erythroid cells expressed carbonic anhydrase I and/or globin mRNA but not carbonic anhydrase II. The GM-CSF- and G-CSF-dependent cell lines had predominantly the morphology of undifferentiated myeloblasts or metamyelocytes, respectively. The GM-CSF-dependent cell lines were sensitive to either GM-CSF or interleukin-3 (IL-3) but did not respond to G-CSF. The G-CSF-dependent cell lines grew to a limited extent in IL-3 but did not respond to GM-CSF. These results indicate that the cell line 32D, originally described as predominantly a basophil/mast cell line, has retained the capacity to give rise to cells which proliferate and differentiate in response to Epo, GM-CSF, and/or G-CSF. These cells represent the first nontransformed cell lines which can be maintained in growth factors other than IL-3 and which differentiate in the presence of physiologic signals. As such, they may represent a model to study the molecular mechanisms underlying the process of hematopoietic differentiation, as well as sensitive targets for bioassays of specific growth factors.  相似文献   

16.
利用PCR扩增得到粒细胞巨噬细胞集落刺激因子(GM-CSF)、白细胞介素-3(IL-3)完整基因片段,将其分别克隆至pGEM-T,构建成GMCSF/IL-3融合蛋白基因,DNA序列与设计预期一致。将得到的融合蛋白基因克隆至T7RNA聚合酶表达载体pT7zz,得到表达质粒pFu,经转化至表达宿主E.coli BL21(DE3),在IPTG诱导下获得融合蛋白目的产物的直接表达。经SDS-PAGE电泳鉴定扫描分析,目的基因产物表达量占菌体总蛋白量的30%以上,目的基因表达产物以包涵体的形式表达。Westernblot鉴定表明,该表达产物可以与GM-CSF抗体及IL-3抗体特异性结合。目的基因表达产物经过包涵体变性、透析复性及柱层析纯化,用GM-CSF、IL-3依赖细胞株TF-1检测,具有明显的生物学活性。  相似文献   

17.
Stromal cell lines derived from murine bone marrow support the growth of immature pre-B cells and produce cytokines that affect the growth and differentiation of other hematopoietic precursors. Conditioned medium (CM) from one such line (TC-1) stimulated marked proliferation of B cells previously activated by anti-Ig (anti-Ig blasts). Proliferation of anti-Ig blasts was not induced by purified cytokines known to be produced by TC-1 (CSF-1, GM-CSF, or G-CSF) or by IL-1, IL-2, IL-3, IL-4, IL-5, or IL-6. Furthermore, IL-2, IL-4, and IL-5, alone or in combination, failed to support proliferation or differentiation of anti-Ig blasts. TC-1 CM enhanced proliferation of B cells that were co-cultured with LPS, anti-Ig, or dextran sulfate; co-stimulation with anti-Ig was unaffected by the presence of monoclonal anti-IL-4. Proliferation of low, but not high, density B cells isolated from spleen was directly stimulated by TC-1 CM. These results suggest that bone marrow stromal cells produce a novel B cell stimulatory factor (BSF-TC) that induces proliferation of activated B cells.  相似文献   

18.
19.
Steel factor (SF) (also called stem cell factor, mast cell growth factor, or c-kit ligand) is a recently cloned hemopoietic growth factor that is produced by bone marrow stromal cells, fibroblasts, and hepatocytes. In both mouse and man it acts synergistically with several colony stimulating factors, including interleukin-3 (IL-3) and granulocyte macrophage-colony stimulating factor (GM-CSF), to induce the proliferation and differentiation of primitive hemopoietic precursor cells. In order to study its mechanism of action and to explore the molecular basis for its synergistic activity we have examined the proteins that become tyrosine phosphorylated in response to SF, IL-3, and GM-CSF. We report herein that SF, but not IL-3 or GM-CSF, dramatically stimulates the tyrosine phosphorylation of the product of the recently discovered proto-oncogene, vav, in two SF-responsive human cell lines, M07E and TF-1. Although phosphorylation is very rapid, reaching maximal levels within 2 min at 37 degrees C, co-immunoprecipitation studies suggest that c-kit may either not associate directly with p95vav or bind to it with very low affinity. Nonetheless, our data suggest that c-kit may utilize p95vav to mediate downstream signaling in hemopoietic cells.  相似文献   

20.
Congote LF  DiFalco MR  Gibbs BF 《Cytokine》2005,30(5):248-253
The nature of erythropoietin (EPO)-dependent, erythroid cell regulatory factors secreted by endothelial cells is largely unknown. The production of thrombospondin 1 (TSP-1) and insulin-like growth factor binding protein 3 (IGFBP-3) is increased in cultures of human umbilical vein endothelial cells (HUVEC) incubated with erythropoietin (EPO). Simultaneous incubation of HUVEC with EPO and interleukin 3 (IL-3) resulted in a decreased production, suggesting that both TSP-1 and IGFBP-3 belong to the EPO- and IL-3-dependent erythroid regulatory factors previously described in cultures of bone marrow endothelial cells. TSP-1 and TSP-1 derived synthetic peptides based on the CD36 and CD47 binding sites of TSPs increased thymidine incorporation into bovine erythroid cells of fetal liver. IGBBP-3 inhibited thymidine incorporation in the same cells. Preincubation of erythroid cells with TSP-1 eliminated the inhibitory activity of IGFBP-3. We suggest that EPO-dependent, endothelial-derived TSP-1 may play a positive role in red cell production by acting directly on erythroid cells, stimulating DNA synthesis and preventing the inhibitory action of IGFBP-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号