首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Drosophila epidermal growth factor receptor (EGFR) is active in different tissues and is involved in diverse processes such as patterning of the embryonic ectoderm, growth and differentiation of imaginal discs and cell survival. During oogenesis, the EGFR is expressed in the somatic follicle cells that surround individual oocyte-nurse cell complexes. In response to germline signals, the follicle cells differentiate in a complex pattern, which in turn leads to the establishment of the egg axes. Two recent reports have shown that the strategies used to pattern posterior follicle cells are different from those used to pattern dorsal follicle cells. In posterior follicle cells, EGFR activity is translated into an on-off response, whereas, in dorsal follicle cells, patterning mechanisms are initiated and refined by feedback that modulates receptor activity over time.  相似文献   

2.
3.
Programmed cell death (PCD) is a highly conserved process that occurs during development and in response to adverse conditions. In Drosophila, most PCDs require the genes within the H99 deficiency, the adaptor molecule Ark, and caspases. Here we investigate 10 cell death genes for their potential roles in two distinct types of PCD that occur in oogenesis: developmental nurse cell PCD and starvation-induced PCD. Most of the genes investigated were found to have little effect on late stage developmental PCD in oogenesis, although ark mutants showed a partial inhibition. Mid-stage starvation-induced germline PCD was found to be independent of the upstream activators and ark although it requires caspases, suggesting an apoptosome-independent mechanism of caspase activation in mid-oogenesis. These results indicate that novel pathways must control PCD in the ovary.  相似文献   

4.
fringe encodes a glycosyltransferase that modulates the ability of the Notch receptor to be activated by its ligands. We describe studies of fringe function during early stages of Drosophila oogenesis. Animals mutant for hypomorphic alleles of fringe contain follicles with an incorrect number of germline cells, which are separated by abnormally long and disorganized stalks. Analysis of clones of somatic cells mutant for a null allele of fringe localizes the requirement for fringe in follicle formation to the polar cells, and demonstrates that fringe is required for polar cell fate. Clones of cells mutant for Notch also lack polar cells and the requirement for Notch in follicle formation appears to map to the polar cells. Ectopic expression of fringe or of an activated form of Notch can generate an extra polar cell. Our results indicate that fringe plays a key role in positioning Notch activation during early oogenesis, and establish a function for the polar cells in separating germline cysts into individual follicles.  相似文献   

5.
This paper describes computational and experimental work on pattern formation in Drosophila egg development (oogenesis), an established experimental model for studying cell fate diversification in developing tissues. Epidermal growth factor receptor (EGFR) is a key regulator of pattern formation and morphogenesis in Drosophila oogenesis. EGFR signalling in oogenesis can be genetically manipulated and monitored at many levels, leading to large sets of heterogeneous data that enable the formulation of increasingly quantitative models of pattern formation in these systems.  相似文献   

6.
The localized expression of Hedgehog (Hh) at the extreme anterior of Drosophila ovarioles suggests that it might provide an asymmetric cue that patterns developing egg chambers along the anteroposterior axis. Ectopic or excessive Hh signaling disrupts egg chamber patterning dramatically through primary effects at two developmental stages. First, excess Hh signaling in somatic stem cells stimulates somatic cell over-proliferation. This likely disrupts the earliest interactions between somatic and germline cells and may account for the frequent mis-positioning of oocytes within egg chambers. Second, the initiation of the developmental programs of follicle cell lineages appears to be delayed by ectopic Hh signaling. This may account for the formation of ectopic polar cells, the extended proliferation of follicle cells and the defective differentiation of posterior follicle cells, which, in turn, disrupts polarity within the oocyte. Somatic cells in the ovary cannot proliferate normally in the absence of Hh or Smoothened activity. Loss of protein kinase A activity restores the proliferation of somatic cells in the absence of Hh activity and allows the formation of normally patterned ovarioles. Hence, localized Hh is not essential to direct egg chamber patterning.  相似文献   

7.
We have analyzed the mechanism of activation of the Epidermal growth factor receptor (Egfr) by the transforming growth factor (TGF) alpha-like molecule, Gurken (Grk). Grk is expressed in the oocyte and activates the Egfr in the surrounding follicle cells during oogenesis. We show that expression of either a membrane bound form of Grk (mbGrk), or a secreted form of Grk (secGrk), in either the follicle cells or in the germline, activates the Egfr. In tissue culture cells, both forms can bind to the Egfr; however, only the soluble form can trigger Egfr signaling, which is consistent with the observed cleavage of Grk in vivo. We find that the two transmembrane proteins Star and Brho potentiate the activity of mbGrk. These two proteins collaborate to promote an activating proteolytic cleavage and release of Grk. After cleavage, the extracellular domain of Grk is secreted from the oocyte to activate the Egfr in the follicular epithelium.  相似文献   

8.
Summary The developmental potential of the cells of the somatic follicular epithelium (follicle cells) was studied in mutants in which the differentiation of the germ-line cells is blocked at different stages of oogenesis. In two mutants, sn 36a and kelch, nurse cell regression does not occur, yet the follicle cells around the small oocyte continue their normal developmental program and produce an egg shell with micropylar cone and often deformed operculum and respiratory appendages. Neither the influx of nurse cell cytoplasm into the oocyte nor the few follicle cells covering the nurse cells are apparently required for the formation of the egg shell. In the tumor mutant benign gonial cell neoplasm (bgcn) the follicle cells can also differentiate to some extent although the germ-line cells remain morphologically undifferentiated. Vitelline membrane material was synthesized by the follicle cells in some bgcn chambers and in rare cases a columnar epithelium, which resembled morphologically that of wild-type stage-9 follicles, formed around the follicle's posterior end. The normal polarity of the follicular epithelium that is characteristic for mid-vitellogenic stages may, therefore, be established in the absence of morphologically differentiating germ-line cells. However, the tumorous germ-line cells do not constitute a homogeneous cell population since in about 30% of the analyzed follicles a cell cluster at or near the posterior pole can be identified by virtue of its high number of concanavalin A binding sites. This molecular marker reveals an anteroposterior polarity of the tumorous chambers. In follicles mutant for both bgcn and the polarity gene dicephalic the cluster of concanavalin A-stained germ-line cells shifts to more anterior positions in the follicle.  相似文献   

9.
In experiments with females of lines with an impaired DNA repair systems mei-9 (impaired excision repair) and mei-41 (impaired postreplicative repair), a method of successive irradiation by X-rays (1000 R) and hyperthermia (+37 degrees C) action was used for the purpose of defining a moment when DNA repair takes place in oogenesis. Repair in mature mei-41 oocytes judged of by synergism effect of the both factors acting was ascertained to take place right after X-raying (prior to DNA replication) and being absent at the fertilization period (at the time of or after DNA replication). DNA repair in mei-9 females was not registered in both cases. On the basis of these facts, it is suggested that coordination of various DNA repair systems is necessary for damaged chromosomes to be repaired. It is also concluded that the method used can be regarded as an effective technique in the study of mutation process.  相似文献   

10.
Developmental signaling cascades that can be perturbed by cocaine and other drugs of abuse have been difficult to study in humans and vertebrate models. Although numerous direct neural targets of cocaine have been elucidated at the molecular level, little is known about the specific cellular events that are impacted indirectly as a result of the drug's perturbation of neural circuits. We have developed oogenesis in Drosophila melanogaster as a model in which to identify downstream biochemical and/or cellular processes that are disrupted by chronic cocaine exposure. In this model, cocaine feeding resulted not only in expected reductions in viability, but also in unanticipated developmental defects during oogenesis, including aberrant follicle morphogenesis and vitellogenic follicle degeneration. To identify mechanisms through which cocaine exerted its deleterious effects on oogenesis, we examined candidate components of neural and hormonal signaling pathways. Cocaine-induced disruptions in follicle formation were enhanced by juvenile hormone exposure and phenocopied by serotonin feeding, while cocaine-activated follicle apoptosis was enhanced by concomitant dopamine feeding. HPLC analysis of dopamine and serotonin in the ovary suggests that these neurotransmitters could variably mediate cocaine's effects on oogenesis indirectly in the brain and/or directly in the ovary itself. We confirmed the involvement of hormone signaling by measuring ecdysteroids, which increase following cocaine exposure, and by demonstrating suppression of cocaine-induced follicle loss by hormone receptor mutants. Cocaine-induced ovarian follicle apoptosis and adult lethality appear to be caused by modulation of dopamine levels, while morphological defects during follicle formation likely result from perturbing serotonin signaling during cocaine exposure. Our work suggests not only a new role for juvenile hormone and/or serotonin in Drosophila ovarian follicle formation, but also a cocaine-sensitive role for dopamine in modulating hormone levels in the female fly.  相似文献   

11.
The effects of epidermal growth factor(EGF) on intracellular calcium ([Ca2+]i)responses to the muscarinic agonist carbachol were studied in a humansalivary cell line (HSY). Carbachol (104 M)-stimulated[Ca2+]i mobilization was inhibited by 40%after 48-h treatment with 5 × 1010 M EGF. EGF alsoreduced carbachol-induced [Ca2+]i inCa2+-free medium and Ca2+ influx followingrepletion of extracellular Ca2+. UnderCa2+-free conditions, thapsigargin, an inhibitor ofCa2+ uptake to internal stores, induced similar[Ca2+]i signals in control and EGF-treatedcells, indicating that internal Ca2+ stores were unaffectedby EGF; however, in cells exposed to thapsigargin, Ca2+influx following Ca2+ repletion was reduced by EGF.Muscarinic receptor density, assessed by binding of the muscarinicreceptor antagonistL-[benzilic-4,4'-3HCN]quinuclidinyl benzilate([3H]QNB), was decreased by 20% after EGF treatment.Inhibition of the carbachol response by EGF was not altered by phorbolester-induced downregulation of protein kinase C (PKC) but was enhancedupon PKC activation by a diacylglycerol analog. Phosphorylation of mitogen-activated protein kinase (MAP kinase) and inhibition of thecarbachol response by EGF were both blocked by the MAP kinase pathwayinhibitor PD-98059. The results suggest that EGF decreases carbachol-induced Ca2+ release from internal stores andalso exerts a direct inhibitory action on Ca2+ influx. Adecline in muscarinic receptor density may contribute to EGF inhibitionof carbachol responsiveness. The inhibitory effect of EGF is mediatedby the MAP kinase pathway and is potentiated by a distinct modulatorycascade involving activation of PKC. EGF may play a physiological rolein regulating muscarinic receptor-stimulated salivary secretion.

  相似文献   

12.
Cortactin is a Src substrate that interacts with F-actin and can stimulate actin polymerization by direct interaction with the Arp2/3 complex. We have isolated complete loss-of-function mutants of the single Drosophila cortactin gene. Mutants are viable and fertile, showing that cortactin is not an essential gene. However, cortactin mutants show distinct defects during oogenesis. During oogenesis, Cortactin protein is enriched at the F-actin rich ring canals in the germ line, and in migrating border cells. In cortactin mutants, the ring canals are smaller than normal. A similar phenotype has been observed in Src64 mutants and in mutants for genes encoding Arp2/3 complex components, supporting that these protein products act together to control specific processes in vivo. Cortactin mutants also show impaired border cell migration. This invasive cell migration is guided by Drosophila EGFR and PDGF/VEGF receptor (PVR). We find that accumulation of Cortactin protein is positively regulated by PVR. Also, overexpression of Cortactin can by itself induce F-actin accumulation and ectopic filopodia formation in epithelial cells. We present evidence that Cortactin is one of the factors acting downstream of PVR and Src to stimulate F-actin accumulation. Cortactin is a minor contributor in this regulation, consistent with the cortactin gene not being essential for development.  相似文献   

13.
Ezrin, Radixin and Moesin (ERM) proteins are thought to constitute a bridge between the actin cytoskeleton and the plasma membrane (PM). Here we report a genetic analysis of Dmoesin, the sole member of the ERM family in Drosophila. We show that Dmoesin is required during oogenesis for anchoring microfilaments to the oocyte cortex. Alteration of the actin cytoskeleton resulting from Dmoesin mutations impairs the localization of maternal determinants, thus disrupting antero-posterior polarity. This study also demonstrates the requirement of Dmoesin for the specific organization of cortical microfilaments in nurse cells and, consequently, mutations in Dmoesin produce severe defects in cell shape.  相似文献   

14.
Extensive programmed cell death occurs in the female germline of many species ranging from C. elegans to humans. One purpose for germline apoptosis is to remove defective cells unable to develop into fertile eggs. In addition, recent work suggests that the death of specific germline cells may also play a vital role by providing essential nutrients to the surviving oocytes. In Drosophila, the genetic control of germline apoptosis and the proteins that carry out the death sentences are beginning to emerge from studies of female sterile mutations. These studies suggest that the morphological changes that occur during the late stages of Drosophila oogenesis may be initiated and driven by a modified form of programmed cell death.  相似文献   

15.
16.
 During Drosophila oogenesis the body axes are determined by signaling between the oocyte and the somatic follicle cells that surround the egg chamber. A key event in the establishment of oocyte anterior-posterior polarity is the differential patterning of the follicle cell epithelium along the anterior-posterior axis. Both the Notch and epithelial growth factor (EGF) receptor pathways are required for this patterning. To understand how these pathways act in the process we have analyzed markers for anterior and posterior follicle cells accompanying constitutive activation of the EGF receptor, loss of Notch function, and ectopic expression of Delta. We find that a constitutively active EGF receptor can induce posterior fate in anterior but not in lateral follicle cells, showing that the EGF receptor pathway can act only on predetermined terminal cells. Furthermore, Notch function is required at both termini for appropriate expression of anterior and posterior markers, while loss of both the EGF receptor and Notch pathways mimic the Notch loss-of-function phenotype. Ectopic expression of the Notch ligand, Delta, disturbs EGF receptor dependent posterior follicle cell differentiation and anterior-posterior polarity of the oocyte. Our data are consistent with a model in which the Notch pathway is required for early follicle cell differentiation at both termini, but is then repressed at the posterior for proper determination of the posterior follicle cells by the EGF receptor pathway. Received: 5 November 1998 / Accepted: 14 December 1998  相似文献   

17.
18.
Ultrastructural observations on oogenesis in Drosophila   总被引:4,自引:0,他引:4  
The ultrastructure of the follicle cells and oocyte periplasm is described during the stages of oogenesis immediately prior to, during, and immediately subsequent to, vitellogenesis. A number of features have not been described previously in Drosophila. Some yolk appears prior to pinocytosis of blood proteins. However, most of the protein yolk forms while the periplasm is filled with micropinocytotic invaginations and tubules derived from the oolemma. These tubules retain the internal layer of material characteristic of coated vesicles and are found to fuse with yolk spheres. No accumulation of electron-dense material in the endoplasmic reticulum or Golgi of the oocyte is found. Both trypan blue and ferritin are accumulated by the oocyte. The follicle cells have an elaborate endoplasmic reticulum during the period of maximum yolk accumulation. Adjacent cells are joined at their base by a zonula adhaerens, forming a band around the cells, and by plaques of gap junctions. Gap junctions are also present between nurse cells and follicle cells. During chorion formation, septate junctions also appear between follicle cells, adjacent to the zonula adhaerens.  相似文献   

19.

Background  

Cellular response to external stimuli requires propagation of corresponding signals through molecular signaling pathways. However, signaling pathways are not isolated information highways, but rather interact in a number of ways forming sophisticated signaling networks. Since defects in signaling pathways are associated with many serious diseases, understanding of the crosstalk between them is fundamental for designing molecularly targeted therapy. Unfortunately, we still lack technology that would allow high throughput detailed measurement of activity of individual signaling molecules and their interactions. This necessitates developing methods to prioritize selection of the molecules such that measuring their activity would be most informative for understanding the crosstalk. Furthermore, absence of the reaction coefficients necessary for detailed modeling of signal propagation raises the question whether simple parameter-free models could provide useful information about such pathways.  相似文献   

20.
BACKGROUND: A polarised cytoskeleton is required to pattern cellular space, and for many aspects of cell behaviour. While the mechanisms ordering the actin cytoskeleton have been extensively studied in yeast, little is known about the analogous processes in other organisms. We have used Drosophila oogenesis as a model genetic system in which to investigate control of cytoskeletal organisation and cell polarity in multicellular eukaryotes. RESULTS: In a screen to identify genes required for Drosophila oocyte polarity, we isolated a Drosophila homologue of the yeast cyclase-associated protein, CAP. Here we show that CAP preferentially accumulates in the oocyte, where it inhibits actin polymerisation. CAP also has a role in oocyte polarity, as cap mutants fail to establish the proper, asymmetric distribution of mRNA determinants within the oocyte. Similarly in yeast, loss of CAP causes analogous polarity defects, altering the distribution of actin filaments and mRNA determinants. CONCLUSIONS: This study identifies CAP as a new effector of actin dynamics in Drosophila. As CAP controls the spatial distribution of actin filaments and mRNA determinants in both yeast and Drosophila, we conclude that CAP has an evolutionarily conserved function in the genesis of eukaryotic cell polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号