首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA topoisomerase II interacts with Lim15/Dmc1 in meiosis   总被引:3,自引:0,他引:3  
Lim15/Dmc1 is a meiosis specific RecA-like protein. Here we propose its participation in meiotic chromosome pairing-related events along with DNA topoisomerase II. Analysis of protein–protein interactions using in vitro binding assays provided evidence that Coprinus cinereus DNA topoisomerase II (CcTopII) specifically interacts with C.cinereus Lim15/Dmc1 (CcLim15). Co-immunoprecipitation experiments also indicated that the CcLim15 protein interacts with CcTopII in vivo. Furthermore, a significant proportion of CcLim15 and CcTopII could be shown to co-localize on chromosomes from the leptotene to the zygotene stage. Interestingly, CcLim15 can potently activate the relaxation/catenation activity of CcTopII in vitro, and CcTopII suppresses CcLim15-dependent strand transfer activity. On the other hand, while enhancement of CcLim15's DNA-dependent ATPase activity by CcTopII was found in vitro, the same enzyme activity of CcTopII was inhibited by adding CcLim15. The interaction of CcLim15 and CcTopII may facilitate pairing of homologous chromosomes.  相似文献   

2.
We have determined the nucleotide sequence of the Drosophila DNA topoisomerase II gene. Data from primer extension and S1 nuclease protection experiments were combined with comparisons of genomic and cDNA sequences to determine the structure of the mature messenger RNA. This message has a large open reading frame of 4341 nucleotides. The length of the predicted protein is 1447 amino acids with a molecular weight of 164,424. Topoisomerase II can be divided into three domains: (1) an N-terminal region with homology to the B (ATPase) subunit of the bacterial type II topoisomerase, DNA gyrase; (2) a central region with homology to the A (breaking and rejoining) subunit of DNA gyrase; (3) a C-terminal region characterized by alternating stretches of positively and negatively charged amino acids. DNA topoisomerase II from the fruit fly shares significant sequence homology with those from divergent sources, including bacteria, bacteriophage T4 and yeasts. The location and distribution of homologous stretches in these sequences are analyzed.  相似文献   

3.
In order to study the sequence specificity of double-strand DNA cleavage by Drosophila topoisomerase II, we have mapped and sequenced 16 strong and 47 weak cleavage sites in the recombinant plasmid p pi 25.1. Analysis of the nucleotide and dinucleotide frequencies in the region near the site of phosphodiester bond breakage revealed a nonrandom distribution. The nucleotide frequencies observed would occur by chance with a probability less than 0.05. The consensus sequence we derived is 5'GT.A/TAY decrease ATT.AT..G 3', where a dot means no preferred nucleotide, Y is for pyrimidine, and the arrow shows the point of bond cleavage. On average, strong sites match the consensus better than weak sites.  相似文献   

4.
Studies suggest that the anticancer drugs VP16-213 and VM26 produce cytotoxicity by inducing protein-associated DNA breakage in vivo through interaction with a yet unknown nuclear component. The effects of these drugs and their congeners on topoisomerase activities was investigated. VP16-213, VM26, and congeners active toward inducing DNA breaks also inhibited the catenation activity of eukaryote type II topoisomerase in vitro at very low drug concentrations. A structure-activity relationship was obtained for inhibition of catenation that parallels in vivo DNA breakage and cytotoxic activities. Type I topoisomerase activity was totally unaffected by these drugs.  相似文献   

5.
An activity from the yeast Saccharomyces cerevisiae, initially noted for its catalysis of aggregation of covalently closed double-stranded DNA rings in the presence of ATP, has been identified as a type II DNA topoisomerase and is designated yeast DNA topoisomerase II. The formation of the DNA aggregate, which has been shown to be a network of DNA rings that are topologically interlocked, requires the presence of a yeast DNA-binding protein in addition to the topoisomerase. In the absence of the binding protein, yeast DNA topoisomerase II catalyzes decatenation and unknotting of duplex DNA rings and the relaxation of negatively or positively supercoiled DNA. All reactions are ATP-dependent and require Mg(II). Similar to other eukaryotic and phage T4-type II DNA topoisomerases, the yeast enzyme does not catalyze DNA supercoiling under the assay conditions employed. The activity is not sensitive to the gyrase inhibitor nalidixic acid, oxolinic acid, or novobiocin. Coumermycin inhibits the activity, however, at a concentration as low as 5 microgram/ml.  相似文献   

6.
Unsaturated long-chain fatty acids selectively bind to the DNA binding sites of DNA polymerase beta and DNA topoisomerase II, and inhibit their activities, although the amino acid sequences of these enzymes are markedly different from each other. Computer modeling analysis revealed that the fatty acid interaction interface in both enzymes has a group of four amino acid residues in common, forming a pocket which binds to the fatty acid molecule. The four amino acid residues were Thr596, His735, Leu741 and Lys983 for yeast DNA topoisomerase II, corresponding to Thr79, His51, Leu11 and Lys35 for rat DNA polymerase beta. Using three-dimensional structure model analysis, we determined the spatial positioning of specific amino acid residues binding to the fatty acids in DNA topoisomerase II, and subsequently obtained supplementary information to build the structural model.  相似文献   

7.
8.
PCNA is a multi-functional protein that is involved in various nuclear events. Here we show that PCNA participates in events occurring during early meiotic prophase. Analysis of protein-protein interactions using surface plasmon resonance indicates that Coprinus cinereus PCNA (CoPCNA) specifically interacts with a meiotic specific RecA-like factor, C. cinereus Lim15/Dmc1 (CoLim15) in vitro. The binding efficiency increases with addition of Mg(2+) ions, while ATP inhibits the interaction. Co-immunoprecipitation experiments indicate that the CoLim15 protein interacts with the CoPCNA protein in vitro and in the cell extracts. Despite the interaction between these two factors, no enhancement of CoLim15-dependent strand transfer activity by CoPCNA was found in vitro. We propose that the interaction between Lim15/Dmc1 and PCNA mediates the recombination-associated DNA synthesis during meiosis.  相似文献   

9.
10.
Extracts from X. laevis germinal vesicles interlock duplex DNA circles to form catenanes. The catenation activity requires Mg++ and ATP. Negatively supercoiled or relaxed DNA can be used as substrates for the catenation reaction. Homology between donor and acceptor DNA is not required, since catenanes are formed between DNA molecules with unrelated sequences. In the course of the isolation of the activity responsible for the catenation reaction, we discovered a new ATP-dependent topoisomerase. The fractions containing the novel topoisomerase catenate and decatenate DNA, the ionic strength dictating which of the two opposing reactions will occur.  相似文献   

11.
DNA topoisomerase II (Top2) is an essential nuclear enzyme and a target of very effective anticancer drugs including anthracycline antibiotics. Even though several aspects of drug activity against Top2 are understood, the drug receptor site is not yet known. Several Top2 mutants have altered drug sensitivity and have provided information of structural features determining drug action. Here, we have investigated the sensitivity to three closely related anthracycline derivatives of yeast Top2 bearing mutations in the CAP-like domain and integrated the findings with computer models of ternary drug-enzyme-DNA complexes. The results suggest a model for the anthracycline receptor wherein a drug molecule has specific interactions with the cleaved DNA as well as amino acid residues of the CAP-like domain of an enzyme monomer. The drug molecule is intercalated into DNA at the site of cleavage, and interestingly, drug-enzyme contacts involve one side of the four-ring chromophore and the side chain of the anthracycline molecule. The findings may explain several established structure-activity relationships of antitumor anthracyclines and may thus provide a framework for further developments of effective Top2 poisons.  相似文献   

12.
Considerable evidence supports a defect at the level of chromatin structure or recognition of that structure in cells from patients with the human genetic disorder ataxia-telangiectasia. Accordingly, we have investigated the activities of enzymes that alter the topology of DNA in Epstein Barr Virus-transformed lymphoblastoid cells from patients with this syndrome. Reduced activity of DNA topoisomerase II, determined by unknotting of P4 phage DNA, was observed in partially purified extracts from 5 ataxia-telangiectasia cell lines. The levels of enzyme activity was reduced substantially in 4 of these cell lines and to a lesser extent in the other cell line compared to controls. DNA topoisomerase I, assayed by relaxation of supercoiled DNA, was found to be present at comparable levels in both cell types. Reduced activity of topoisomerase II in ataxia-telangiectasia is compatible with the molecular, cellular and clinical changes described in this syndrome.  相似文献   

13.
In eukaryotes, meiosis leads to genetically variable gametes through recombination between homologous chromosomes of maternal and paternal origin. Chromatin organization following meiotic recombination is critical to ensure the correct segregation of homologous chromosomes into gametes. However, the mechanism of chromatin organization after meiotic recombination is unknown. In this study we report that the meiosis-specific recombinase Lim15/Dmc1 interacts with the homologue of the largest subunit of chromatin assembly factor 1 (CAF-1) in the basidiomycete Coprinopsis cinerea (Coprinus cinereus). Using C. cinerea LIM15/DMC1 (CcLIM15) as the bait in a yeast two-hybrid screen, we have isolated the C. cinerea homologue of Cac1, the largest subunit of CAF-1 in Saccharomyces cerevisiae, and named it C. cinerea Cac1-like (CcCac1L). Two-hybrid assays confirmed that CcCac1L binds CcLim15 in vivo. beta-Galactosidase assays revealed that the N-terminus of CcCac1L preferentially interacts with CcLim15. Co-immunoprecipitation experiments showed that these proteins also interact in the crude extract of meiotic cells. Furthermore, we demonstrate that, during meiosis, CcCac1L interacts with proliferating cell nuclear antigen (PCNA), a component of the DNA synthesis machinery recently reported as an interacting partner of Lim15/Dmc1. Taken together, these results suggest a novel role of the CAF-1-PCNA complex in meiotic events. We propose that the CAF-1-PCNA complex modulates chromatin assembly following meiotic recombination.  相似文献   

14.
A consensus sequence for cleavage by vertebrate DNA topoisomerase II.   总被引:30,自引:13,他引:17       下载免费PDF全文
Topoisomerase II, purified from chicken erythrocytes, was reacted with a large number of different DNA fragments and cleavages were catalogued in the presence and absence of drugs that stabilize the cleavage intermediate. Cleavages were sequenced to derive a consensus for topoisomerase II that predicts catalytic sites. The consensus is: (sequence; see text) where N is any base and cleavage occurs at the indicated mark between -1 and +1. The consensus accurately predicts topoisomerase II sites in vitro. This consensus is not closely related to the Drosophila consensus sequence, but the two enzymes show some similarities in site recognition. Topoisomerase II purified from human placenta cleaves DNA sites that are essentially identical to the chicken enzyme, suggesting that vertebrate type II enzymes share a common catalytic sequence. Both viral and tissue specific enhancers contain sites sharing strong homology to the consensus and endogenous topoisomerase II recognizes some of these sites in vivo.  相似文献   

15.
The effect of the 2-nitroimidazole Ro 15-0216 upon the interaction between purified topoisomerase II and its DNA substrate was investigated. The cleavage reaction in the presence of this DNA-nonintercalative drug took place with the hallmarks of a regular topoisomerase II mediated cleavage reaction, including covalent linkage of the enzyme to the cleaved DNA. In the presence of Ro 15-0216, topoisomerase II mediated cleavage was extensively stimulated at major cleavage sites of which only one existed in the 4363 base pair pBR322 molecule. The sites stimulated by Ro 15-0216 shared a pronounced sequence homology, indicating that a specific nucleotide sequence is crucial for the action of this drug. The effect of Ro 15-0216 thus differs from that of the clinically important topoisomerase II targeted agents such as mAMSA, VM26, and VP16, which enhance enzyme-mediated cleavage at a multiple number of sites. In contrast to the previous described drugs, Ro 15-0216 did not exert any inhibitory effect on the enzyme's catalytic activity. This observation might be ascribed to the low stability of the cleavage complexes formed in the presence of Ro 15-0216 as compared to the stability of the ones formed in the presence of traditional topoisomerase II targeted drugs.  相似文献   

16.
Type II DNA topoisomerases isolated from posterior silk glands of Bombyx mori and HeLa cells utilize ATP for unknotting of knotted DNA, relaxation of super-coiled DNA, and catenation/decatenation of circular duplex DNA under catalytic conditions. In these reactions, ATP cannot be replaced by GTP. However, GTP induces knotting, catenation, relaxation, but decatenation of circular duplex DNA by stoichiometric amounts of these enzymes. Only a limited round of the reactions proceeds with a concomitant hydrolysis of GTP and then pauses. The GTP-dependent reactions may be employed for maintenance of the knotted and/or catenated state they formed.  相似文献   

17.
The sequence specificity of topoisomerase-II-mediated DNA cleavage, stimulated by 2-methyl-9-hydroxy ellipticinium and 4′, 5′,7-trihydroyflavone (genistein) was investigated by sequencing analysis of DNA cleavage sites and molecular modeling techniques. The former drug exhibits a marked preference for a T base at the position immediately preceding the cleavage site (?1). The latter shares the preference for the same base, with an additional preference for a thymine at position +1. The cleavage intensity patterns for the two drugs differ considerably. From a conformational point of view, ellipticinium and genistein exhibit similar overall shape and dimensions. However, the fused ring system in the former generates a planar structure whereas the single bond, connecting the two aromatic portions in the latter, allows internal rotation. The most stable conformation of genistein corresponds to a deviation of about 40° from planarity. A computer-assisted analysis was carried out to compare the steric and electrostatic properties of the two compounds. Two types of preferred (energetically almost degenerate) alignment for the two molecules were found. One corresponds to overlapping of the 9-hydroxyl containing ring of ellipticinium with the 4′-hydroxyphenyl moiety of genistein, the other envisages the same moiety of ellipticine superimposed to the hydroxyl-benzopyrone portion of genistein. The structural similarities of the test drugs might account for the common preference for stimulation of DNA cleavage at position +1, whereas the different possible arrangements of genistein in the cleavable complex could explain both the additional +1 specificity exhibited by this compound and the differences in cleavage intensity patterns observed in comparison to ellipticinium.  相似文献   

18.
A defect in DNA topoisomerase II activity in ataxia-telangiectasia cells   总被引:2,自引:0,他引:2  
DNA topoisomerase type I and II activities were determined by serial dilution in nuclear extracts from control and ataxia-telangiectasia lymphoblastoid cells. Topoisomerase I activity, assayed by relaxation of supercoiled plasmid DNA, was found to be approximately the same in both cell types. In order to remove interference from topoisomerase I, the activity of topoisomerase II was measured by the unknotting of knotted P4 phage DNA in the presence of ATP. The activity of topoisomerase II was markedly reduced in two ataxia-telangiectasia cell lines, AT2ABR and AT8ABR, compared to controls. This reduction in activity was detected with increasing concentration of protein and in time course experiments at a single protein concentration. A third cell line, AT3ABR, did not have a detectably lower activity of topoisomerase II when assayed under these conditions. The difference in topoisomerase II activity in the ataxia-telangiectasia cell lines examined may reflect to some extent the heterogeneity observed in this syndrome.  相似文献   

19.
Sumoylation is a post-translational modification system that covalently attaches the small ubiquitin-related modifier (SUMO) to target proteins. Ubc9 is required as the E2-type enzyme for SUMO-1 conjugation to targets. Here, we show that Ubc9 interacts with the meiosis-specific RecA homolog, Lim15/Dmc1 in the basidiomycete Coprinus cinereus (CcLim15), and mediates sumoylation of CcLim15 during meiosis. In vitro protein-protein interaction assays revealed that CcUbc9 interacts with CcLim15 and binds to the C-terminus (amino acids 105-347) of CcLim15, which includes the ATPase domain. Immunocytochemistry demonstrates that CcUbc9 and CcLim15 colocalize in the nuclei from the leptotene stage to the early pachytene stage during meiotic prophase I. Coimmunoprecipitation experiments indicate that CcUbc9 interacts with CcLim15 in vivo during meiotic prophase I. Furthermore, we show that CcLim15 is a target protein of sumoylation both in vivo and in vitro, and identify the C-terminus (amino acids 105-347) of CcLim15 as the site of sumoylation in vitro. These results suggest that sumoylation is a candidate modulator of meiotic recombination via interaction between Ubc9 and Lim15/Dmc1.  相似文献   

20.
A DNA consensus sequence for topoisomerase II cleavage sites was derived previously based on a statistical analysis of the nucleotide sequences around 16 sites that can be efficiently cleaved by Drosophila topoisomerase II (Sander, M., and Hsieh, T. (1985) Nucleic Acids Res. 13, 1057-1072). A synthetic 21-mer DNA sequence containing this cleavage consensus sequence was cloned into a plasmid vector, and DNA topoisomerase II can cleave this sequence at the position predicted by the cleavage consensus sequence. DNase I footprint analysis showed that topoisomerase II can protect a region of approximately 25 nucleotides in both strands of the duplex DNA, with the cleavage site located near the center of the protected region. Similar correlation between the DNase I footprints and strong topoisomerase II cleavage sites has been observed in the intergenic region of the divergent HSP70 genes. This analysis therefore suggests that the strong DNA cleavage sites of Drosophila topoisomerase II likely correspond to specific DNA-binding sites of this enzyme. Furthermore, the extent of DNA contacts made by this enzyme suggests that eucaryotic topoisomerase II, in contrast to bacterial DNA bacterial DNA gyrase, cannot form a complex with extensive DNA wrapping around the enzyme. The absence of DNA wrapping is probably the mechanistic basis for the lack of DNA supercoiling action for eucaryotic topoisomerase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号