首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
X Zhu  C Lai  S Thomas    S J Burden 《The EMBO journal》1995,14(23):5842-5848
Neuregulin (NRG) is concentrated at synaptic sites and stimulates expression of acetylcholine receptor (AChR) genes in muscle cells grown in cell culture. These results raise the possibility that NRG is a synaptic signal that activates AChR gene expression in synaptic nuclei. Stimulation of NRG receptors, erbB3 and erbB4 initiates oligomerization between these receptors or between these receptors and other members of the epidermal growth factor (EGF) receptor family, resulting in stimulation of their associated tyrosine kinase activities. To determine which erbBs might mediate synapse-specific gene expression, we used antibodies against each erbB to study their expression in rodent skeletal muscle by immunohistochemistry. We show that erbB2, erbB3 and erbB4 are concentrated at synaptic sites in adult skeletal muscle. ErbB3 and erbB4 remain concentrated at synaptic sites following denervation, indicating that erbB3 and erbB4 are expressed in the postsynaptic membrane. In addition, we show that expression of NRG and erbBs, like AChR gene expression, increases at synaptic sites during postnatal development. The localization of erbB3 and erbB4 at synaptic sites is consistent with the idea that a NRG-stimulated signaling pathway is important for synapse-specific gene expression.  相似文献   

3.
4.
5.
The Drosophila neuromuscular junction (NMJ) is a glutamatergic synapse that is structurally and functionally similar to mammalian glutamatergic synapses. These synapses can, as a result of changes in activity, alter the strength of their connections via processes that require chromatin remodeling and changes in gene expression. The chromodomain helicase DNA binding (CHD) protein, Kismet (Kis), is expressed in both motor neuron nuclei and postsynaptic muscle nuclei of the Drosophila larvae. Here, we show that Kis is important for motor neuron synaptic morphology, the localization and clustering of postsynaptic glutamate receptors, larval motor behavior, and synaptic transmission. Our data suggest that Kis is part of the machinery that modulates the development and function of the NMJ. Kis is the homolog to human CHD7, which is mutated in CHARGE syndrome. Thus, our data suggest novel avenues of investigation for synaptic defects associated with CHARGE syndrome.  相似文献   

6.
7.
8.
Nuclei isolated from embryos of wheat (var. Yamhill) incorporated [(3)H]UTP into a trichloroacetic acid-insoluble product linearly for 60 minutes. When the RNA synthesized in vitro was analyzed on a sucrose gradient, the amount of RNA in the 4S region increased with longer incubation times. These data and the absence of higher molecular weight RNA of specific size classes in our work (and previously published reports) suggested that nuclear fractions from plant tissue contained active nucleases. This was confirmed when wheat nuclei were mixed with [(3)H]yeast RNA (4, 18, 26S). All of the radioactive yeast RNA was degraded within 30 minutes to species sedimenting between 4 and 10S. The inclusion of high salt (125 millimolar (NH(4))(2)SO(4), 100 millimolar KCl), EGTA, and exogenous RNA or DNA reduced but did not eliminate endogenous RNase activity. Wheat embryo nuclei were further purified by centrifugation on a gradient of a polyvinylpyrrolidone-coated colloidal silica suspension (Percoll). These nuclei were ellipsoidal, free of cytoplasmic material, and lacked endogenous nuclease activity when assayed with [(3)H]yeast RNA. Sucrose gradients were not as effective as Percoll gradients in purifying nuclei free of RNase activity. The Percoll method of isolating nuclei and the RNase assay reported here will be useful in isolating plant nuclei that are capable of synthesizing distinct RNA species in vitro.  相似文献   

9.
10.
11.
12.
13.
ATP-promoted efflux of poly(A)-rich RNA from isolated nuclei of prelabeled mouse lymphoma L5178y cells has an activation energy of 51.5 kJ/mol, similar to that found for the nuclear envelope nucleoside triphosphatase (48.1 kJ/mol) assumed to be involved in mediating nucleocytoplasmic transport of at least some RNA. Here we show that efflux of two specific poly(A)-rich mRNAs (actin and beta-tubulin) from isolated L-cell nuclei is almost totally dependent on the presence of ATP, while efflux of poly(A)-free histone mRNA (H4, H2B, and H1) also occurs to a marked extent in the absence of this nucleotide. Measurements of temperature dependence of transport rate revealed an activation energy of 56.1 kJ/mol for actin mRNA, while the activation energy for histone-H4-mRNA efflux was in the same range as that found for ATP-induced release of RNA from demembranated nuclei (about 15-20 kJ/mol). Addition of nonhydrolyzable nucleotide analogs of ATP to the in vitro system used for measurement of RNA transport did not result in release of nonhistone mRNA (actin), but enhanced the efflux of H4 mRNA to approximately the same extent as ATP. Although not absolutely required, addition of ATP stimulated the rate of export of histone mRNA about twofold. Only the poly(A)-rich RNA, but not the poly(A)-free RNA, released from isolated nuclei was found to compete with poly(A) for the nuclear envelope mRNA-binding site, indicating the mechanism of transport for both RNA classes to be distinct. Export of both nonhistone and histone mRNA was found to be inhibited by a monoclonal antibody against a p60 nuclear-pore-complex antigen. This antibody had no effect on the nucleoside triphosphatase, mediating transport of poly(A)-rich mRNA.  相似文献   

14.
Skeletal muscle aging is accompanied by loss of muscle mass and strength. Examining changes in myonuclear proteins with age would provide insight into molecular processes which regulate these profound changes in muscle physiology. However, muscle tissue is highly adapted for contraction and thus comprised largely of contractile proteins making the nuclear proteins difficult to identify from whole muscle samples. By developing a method to purify myonuclei from whole skeletal muscle, we were able to collect myonuclei for analysis by flow cytometry, biochemistry, and mass spectrometry. Nuclear purification dramatically increased the number and intensity of nuclear proteins detected by mass spectrometry compared to whole tissue. We exploited this increased proteomic depth to investigate age‐related changes to the myonuclear proteome. Nuclear levels of 54 of 779 identified proteins (7%) changed significantly with age; these proteins were primarily involved in chromatin maintenance and RNA processing. To determine whether the changes we detected were specific to myonuclei or were common to nuclei of excitatory tissues, we compared aging in myonuclei to aging in brain nuclei. Although several of the same processes were affected by aging in both brain and muscle nuclei, the specific proteins involved in these alterations differed between the two tissues. Isolating myonuclei allowed a deeper view into the myonuclear proteome than previously possible facilitating identification of novel age‐related changes in skeletal muscle. Our technique will enable future studies into a heretofore underrepresented compartment of skeletal muscle.  相似文献   

15.
16.
Triple-resonance two-dimensional H6/H5(C4N)H and C6/C5(C4N)H experiments are described that provide through-bond H6/H5 or C6/C5 to imino/amino correlations in pyrimidine bases in 13C,15N-labeled RNA. The experiments simultaneously transfer H6/H5 magnetization by an INEPT step to the C6/C5 nuclei and by homonuclear CC- and heteronuclear CN-TOCSY steps via the intervening C4 nucleus to the N3/N4 nuclei and then by a reverse INEPT step to the imino/amino hydrogens. The sensitivity of these experiments is high as demonstrated using a 30-nucleotide pyrimidine rich RNA at a concentration of 0.9 mM at temperatures of 10°C and 25°C. This indicates the general applicability of the experiments and the possibility to obtain correlations for imino resonances in non-canonical regions of the target RNA.  相似文献   

17.
After injections of 3H thymidine or 3H proline, the physiological hearth growth in mice of the CBA strain belonging to various age groups was studied by means of autoradiography. The most important results are the following: The duration of the postnatal growth period is determined by the degree of maturity of the heart at the time of birth. It varies from species to species. 2. In the perinatal developmental phase the percentage of the 3H thymidine-labelled connective-tissue nuclei is higher than that of the muscle nuclei. In this period the connective supporting tissue is considerably strengthened. 3. During the postnatal developmental phase the DNA synthesis in the muscle nuclei aids the preparation of mitoses. After the postnatal duplication of cells the mitotic genes are repressed. The further growth is effected by the increase in weight of the individual fibres. 4. The process of growth is substantially determined by the intracardiac or intramyocardiac pressure and thus by the extension of the muscle fibre. Prior to birth the percentage of the labelled nuclei of muscle cells and connective tissue cells in the right ventricle was higher than in the left ventricular wall. In the postnatal period we observed a shift in the percentage of the labelled cells towards the left ventricular wall. The basis and the median section of the ventricular wall. The basis and the median section of the ventricular wall contain a higher percentage of labelled cells than does the apex cordis. During the first two weeks of live most of the DNA synthesising nuclei of muscle and connective tissue cells are localized in the two inner muscle shells. Later in life no clear distinctions can be demonstrated between the individual ventricular layers.  相似文献   

18.
19.
20.
We have studied the requirements for efficient histone-specific RNA 3' processing in nuclear extract from mammalian tissue culture cells. Processing is strongly impaired by mutations in the pre-mRNA spacer element that reduce the base-pairing potential with U7 RNA. Moreover, by exchanging the hairpin and spacer elements of two differently processed H4 genes, we find that this difference is exclusively due to the spacer element. Finally, processing is inhibited by the addition of competitor RNAs, if these contain a wild-type spacer sequence, but not if their spacer element is mutated. Conversely, the importance of the hairpin for histone RNA 3' processing is highly variable: A hairpin mutant of the H4-12 gene is processed with almost wild-type efficiency in extract from K21 mouse mastocytoma cells but is strongly affected in HeLa cell extract, whereas an identical hairpin mutant of the H4-1 gene is affected in both extracts. The hairpin defect of H4-12-specific RNA in HeLa cells can be overcome by a compensatory mutation that increases the base complementarity to U7 snRNA. Very similar results were also obtained in RNA competition experiments: processing of H4-12-specific RNA can be competed by RNA carrying a wild-type hairpin element in extract from HeLa, but not K21 cells, whereas processing of H4-1-specific RNA can be competed in both extracts. With two additional histone genes we obtained results that were in one case intermediate and in the other similar to those obtained with H4-1. These results suggest that hairpin binding factor(s) can cooperatively support the ability of U7 snRNPs to form an active processing complex, but is(are) not directly involved in the processing mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号