首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular clones of vesicular stomatitis virus mRNA's were used to determine the 3'-terminal sequences of mRNA's encoding the N and NS proteins. This new approach to VSV mRNA sequencing allowed the first comparison of 3'-terminal sequences. The sequences showed a tetranucleotide homology, UAUG, immediately preceding the polyadenylic acid. In addition, both mRNA's had an AU-rich region including the tetranucleotide AUAU at positions 16 to 19 nucleotides from the polyadenylic acid. A possible secondary structure between the 3' end of N mRNA and the 5' end of the adjacent NS mRNA is noted. These structural features may serve as signals for termination (or cleavage) and polyadenylation of vesicular stomatitis virus mRNA's. Neither mRNA had the polyadenylic acidproximal hexanucleotide, AAUAAA, found in eucaryotic cellular and viral mRNA's transcribed from nuclear DNA. The probable location of the translation termination codon for the NS protein is only six nucleotides from polyadenylic acid in NS mRNA.  相似文献   

2.
We compared the predicted amino acid sequences of the vesicular stomatitis virus and rabies virus glycoproteins by using a computer program which provides an optimal alignment and a statistical significance for the match. Highly significant homology between these two proteins was detected, including identical positioning of one glycosylation site. A significant homology between the predicted amino acid sequences of vesicular stomatitis virus and influenza virus matrix proteins was also found.  相似文献   

3.
The entire phosphoprotein (P) and nucleocapsid (N) protein gene sequences and deduced amino acid sequences for 18 selected vesicular stomatitis virus isolates representative of the natural genetic diversity within the New Jersey serotype are reported. Phylogenetic analysis of the data using maximum parsimony allowed construction of evolutionary trees for the individual genes and the combined N, P, and glycoprotein (G) genes of these viruses. Virtually identical rates of nucleotide substitutions were found for each gene, indicating that evolution of these genes occurs at essentially the same rate. Although up to 19 and 17% sequence differences were evident in the P and N genes, respectively, no variation in gene length or evidence of recombinational rearrangements was found. However, striking evolutionary differences were observed among the amino acid sequences of vesicular stomatitis virus New Jersey N, P, and G proteins. The N protein amino acid sequence was the most highly conserved among the different isolates, indicating strong functional and structural constraints. Conversely, the P protein amino acid sequences were highly variable, indicating considerably fewer constraints or greater evolutionary pressure on the P protein. Much of the remarkable amino acid variability of the P protein resided in a hypervariable domain located between amino acids 153 and 205. The variability within this region would be consistent with it playing a structural role as a spacer to maintain correct conformational presentation of the separate active domains of this multifunctional protein. In marked contrast, the adjacent domain I of the P protein (previously thought to be under little evolutionary constraint) contained a highly conserved region. The colocalization of a short, potentially functional overlapping open reading frame to this region may explain this apparent anomaly.  相似文献   

4.
The complete nucleotide sequence of the NS mRNA of vesicular stomatitis virus (New Jersey serotype) was established from two cDNA clones spanning the entire coding region of the mRNA. The gene is 856 nucleotides long and can code for a polypeptide of 274 amino acids. Comparison with the nucleotide sequence of the NS gene of the Indiana serotype revealed only 41% sequence homology. The deduced amino acid sequences of the NS proteins were only 32% homologous, with no identical stretches of more than five amino acids. However, at the C-terminal domain there was a conserved region of 21 amino acids with greater than 90% homology. Surprisingly, relative hydropathicity plots also demonstrated the presence of a large number of hydrophilic amino acids sequestered similarly over the N-terminal half of the protein. In addition, the total number of serine and threonine residues, presumptive phosphorylation sites, was similar and included seven serine and three threonine residues located at identical positions. It appears that during divergent evolution of these two vesicular stomatitis virus serotypes from a common ancestor, considerable mutation occurred in the main body of the gene but the overall structure of the protein was retained. The function of the NS protein in relation to the evolution of the two viruses is discussed.  相似文献   

5.
The nucleotide sequence of the mRNA encoding the glycoprotein from the New Jersey serotype of vesicular stomatitis virus (VSV) was determined from a cDNA clone containing the entire coding region. The sequence of 12 5'-terminal noncoding nucleotides present in the mRNA but not in the cDNA clone was determined from a primer extended to the 5' terminus of the mRNA. The mRNA is 1,573 nucleotides long (excluding polyadenylic acid) and encodes a protein of 517 amino acids. Only six nucleotides occur between the translation termination codon and the polyadenylic acid. Short homologies between the untranslated termini of this mRNA and the mRNAs of the Indiana serotype were found. The predicted protein sequence was compared with that of the glycoprotein of the Indiana serotype of VSV and with the glycoprotein of rabies virus, using a computer program which determines optimal alignment. An amino acid identity of 50.9% was found for the two VSV serotypes. Approximately 20% identity was found between the rabies virus and VSV New Jersey glycoproteins. The positions and sizes of the transmembrane domains, the signal sequences, and the glycosylation sites are identical in both VSV serotypes. Two of five serine residues which were possible esterification sites for palmitate in the glycoprotein from the Indiana serotype are changed to glycine residues in the glycoprotein from the New Jersey serotype. Because the glycoprotein of the New Jersey serotype does not contain esterified palmitate, we suggest that one or both of these residues are the probable esterification sites in the glycoprotein from the Indiana serotype.  相似文献   

6.
The complete nucleotide sequences of the vesicular stomatitis virus mRNA's encoding the glycoprotein (G) and the matrix protein (M) have been determined from cDNA clones that contain the complete coding sequences from each mRNA. The G protein mRNA is 1,665 nucleotides long, excluding polyadenylic acid, and encodes a protein of 511 amino acids including a signal peptide of 16 amino acids. G protein contains two large hydrophobic domains, one in the signal peptide and the other in the transmembrane segment near the COOH terminus. Two sites of glycosylation are predicted at amino acid residues 178 and 335. The close correspondence of the positions of these sites with the reported timing of the addition of the two oligosaccharides during synthesis of G suggests that glycosylation occurs as soon as the appropriate asparagine residues traverse the membrane of the rough endoplasmic reticulum. The mRNA encoding the vesicular stomatitis virus M protein is 831 nucleotides long, excluding polyadenylic acid, and encodes a protein of 229 amino acids. The predicted M protein sequence does not contain any long hydrophobic or nonpolar domains that might promote membrane association. The protein is rich in basic amino acids and contains a highly basic amino terminal domain. Details of construction of the nearly full-length cDNA clones are presented.  相似文献   

7.
The nucleotide sequence of the mRNA encoding the glycoprotein of infectious hematopoietic necrosis virus was determined from a cDNA clone containing the entire coding region. The G-protein cDNA is 1,609 nucleotides long (excluding the polyadenylic acid) and encodes a protein of 508 amino acids. The predicted amino acid sequence was compared with that of the glycoprotein of the Indiana and New Jersey serotypes of vesicular stomatitis virus and with the glycoprotein of rabies virus, using a computer program which determined optimal alignment. An amino acid identity of approximately 20% was found between infectious hematopoietic necrosis virus and the two vesicular stomatitis virus serotypes and between infectious hematopoietic necrosis virus and rabies virus. The positions and sizes of the signal sequence and transmembrane domain and the possible glycosylation sites were determined.  相似文献   

8.
The in vitro RNA synthesis by the virion-associated RNA polymerase of vesicular stomatitis virus (VSV), New Jersey serotype, was compared with that of the serologically distinct Indiana serotype of VSV. The New Jersey serotype of VSV synthesized five distinct mRNA species in vitro, three of which were smaller than the corresponding species synthesized by the Indiana serotype of VSV. These included the mRNA's coding for the G, M, and NS proteins. By hybridization experiments, virtually no sequence homology was detected between the mRNA's of the two serotypes. Despite this lack of overall homology, the 12 to 18S mRNA species of both serotype contained a common 5'-terminal hexanucleotide sequence, G(5')ppp(5')A-A-C-A-G. The signicance of this finding in light of specific interactions between the two serotypes of VSV in vivo is discussed.  相似文献   

9.
DNA sequences were determined for three cDNA clones encoding vesicular stomatitis virus glycoproteins from the tsO45 mutant (which encodes a glycoprotein that exhibits temperature-sensitive cell-surface transport), the wild-type parent strain, and a spontaneous revertant of tsO45. The DNA sequence analysis showed that as many as three amino acid changes could be responsible for the transport defect. By recombining the cDNA clones in vitro and expressing the recombinants in COS cells, we were able to trace the critical lesion in tsO45 to a single substitution of a polar amino acid (serine) for a hydrophobic amino acid (phenylalanine) in a hydrophobic domain. We suggest that this nonconservative substitution may block protein transport by causing protein denaturation at the nonpermissive temperature. Comparison of the predicted glycoprotein sequences from two vesicular stomatitis virus strains suggests a possible basis for the differential carbohydrate requirement in transport of the two glycoproteins.  相似文献   

10.
11.
Poly(A)-containing vesicular stomatitis virus mRNA species synthesized in vesicular stomatitis virus-infected cells have been separated into four bands by electrophoresis on formamide-polyacrylamide gels. Two-dimensional fingerprints of ribonuclease T-1 and ribonuclease A digests of the RNA from each band show that they contain unique oligonucleotide sequences as well as 60 to 125 nucleotides of poly(A). The fingerprints were used to determine the nucleotide sequence complexities of RNA from three of the bands. Two contain nucleotide sequences which account completely for their molecular weights (0.70 times 10-6 and 0.55 times 10-6) determined by gel electrophoresis and sedimentation rate, and, therefore, these are radiochemically pure RNA species. The most rapidly migrating band must contain two ro three different RNA species since it has a molecular weight of 0.28 times 10-6, determined by physical methods, and a nucleotide sequence complexity two to three times that expected for a pure RNA species of this size. These data are in complete accord with translational studies (accompanying paper) which show that each of the two pure RNA species codes for a distinct viral protein, whereas the third codes for two viral proteins. From the molecular weight and sequence complexity determinations on mRNA from the bands, we conclude that most of the vesicular stomatitis virus genome is transcribed into discrete mRNA species.  相似文献   

12.
13.
The complete nucleotide sequences of the vesicular stomatitis virus (VSV) mRNA's encoding the N and NS proteins have been determined from the sequences of cDNA clones. The mRNA encoding the N protein is 1,326 nucleotides long, excluding polyadenylic acid. It contains an open reading frame for translation which extends from the 5'-proximal AUG codon to encode a protein of 422 amino acids. The N and mRNA is known to contain a major ribosome binding site at the 5'-proximal AUG codon and two other minor ribosome binding sites. These secondary sites have been located unambiguously at the second and third AUG codons in the N mRNA sequence. Translational initiation at these sites, if it in fact occurs, would result in synthesis of two small proteins in a second reading frame. The VSV and mrna encoding the NS protein is 815 nucleotides long, excluding polyadenylic acid, and encodes a protein of 222 amino acids. The predicted molecular weight of the NS protein (25,110) is approximately one-half of that predicted from the mobility of NS protein on sodium dodecyl sulfate-polyacrylamide gels. Deficiency of sodium dodecyl sulfate binding to a large negatively charged domain in the NS protein could explain this anomalous electrophoretic mobility.  相似文献   

14.
15.
16.
J K Rose 《Cell》1978,14(2):345-353
Nucleotide sequences of the ribosome-protected translation initiation sites from the vesicular stomatitis virus (VSV) M and L protein mRNAs have been determined, completing the sequences of the sites from all the VSV mRNAs. A low level of protection at two internal AUG-containing sites in the N mRNA is also described. Small homologies are evident among some of the sites, but there are no obvious features common to all the sites other than a single AUG codon. In contrast, a large homology between the VSV M mRNA site and the alfalfa mosaic virus coat mRNA site (Koper-Zwarthoff et al., 1977) is noted. This homology suggests the existence of a common ancestral gene for these two apparently unrelated viruses. For each VSV mRNA species, the smallest sites protected in either the 40S or 80S initiation complexes are identical. These sites always contained the initiation codon, but only contained the capped 5' end in those mRNAs having the 5' end near the initiation site. If 40S ribosomes bind to the capped 5' end, either they do not protect it from nuclease digestion or the protection is only transitory in some VSV mRNAs. Consideration of the structures of the ribosome binding sites suggests that the differential effects of hypertonic shock on translation (Nuss and Koch, 1976) may be related to the distance between the 5' end of the mRNA and the initiation codon.  相似文献   

17.
Using 3'-end-labeled genome probes, cells infected with vesicular stomatitis virus Chandipura, Cocal, and Piry serotypes were shown to contain (+) leader RNAs of approximately 50 nucleotides in length. The nucleotide sequence of the leader RNA regions of these genomes was determined and compared with the previously reported sequences of both the (+) and (-) leader RNA regions of other vesicular stomatitis virus serotypes. Regions of strong conservation of nucleotide sequence among the various vesicular stomatitis virus serotypes suggest those nucleotides thought to be involved in control functions during vesicular stomatitis virus replication.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号