首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In two experiments, the rhabditid nematode Phasmarhabditis hermaphrodita, a parasite of slugs, was cultured in vitro and applied as a drench to soil at four dose rates (3 108, 1 109, 3 109 and 1 1010 ha-1) 1 or 4 days before planting lettuce seedlings in a polythene tunnel. The effects of the four nematode doses on slug damage during the first 3 weeks after planting and on the numbers of slugs found within and below lettuce plants at harvest were measured. Results were then compared with untreated plots and with plots where methiocarb pellets were applied at the recommended field rate. In the first experiment, methiocarb pellets significantly reduced the percentage of plants damaged by slugs, but the nematode did not. In the second experiment, methiocarb pellets and the second highest dose of nematodes significantly reduced the percentage of plants damaged by slugs. The different effect of the nematode in the two experiments may have resulted from differences in the timing of nematode application and/or differences in the pattern of slug damage between experiments. At the end of the first experiment, the highest two doses of nematodes and methiocarb pellets had significantly reduced the number of slugs found within lettuce plants at harvest and on the soil surface below the plants. At the end of the second experiment, analysis of variance showed no significant effects of any treatment on slug numbers or biomass, but regression analysis showed significant negative relationships between nematode dose and total slug numbers, numbers of Arion ater agg. and biomass of Deroceras reticulatum. In both experiments, increasing nematode dose significantly reduced the numbers of slugs found contaminating the harvested lettuce. At the end of the second experiment, the mean weight of individuals of A. ater agg. increased with rising nematode dose.  相似文献   

2.
In three field experiments, the rhabditid nematode Phasmarhabditis hermaphrodita was applied one or more times at the standard rate (3 × 109 ha?1) or half the standard rate to protect crops from slug damage under experimental conditions. Expt 1 was done in a field planted with the ornamental Polygonatum japonica. The treatments were: infective juveniles of the nematode at the standard field rate, metaldehyde pellets at the recommended field rate, and ioxynil (a herbicide with molluscicidal properties) at 90 mg m?2. The treatments were repeated every 2 wk. Arion ater agg. caused most of the damage to P. japonica. There were no significant differences in damage between treatments during the 3 wk after first application, but plants on plots treated with metaldehyde or nematodes had significantly less damage than plants on untreated plots in the fourth and fifth weeks. Expts 2 and 3 were done on the same site, the first with leaf beet and the second with lettuce. The treatments in these experiments were: nematodes applied to the planted area at the standard field rate 3 days prior to planting, with or without previous application of cow manure; nematodes at half standard rate applied twice, 6 days apart, to the planted area or to the surrounding area; metaldehyde pellets and iron phosphate pellets, both applied at the recommended rate to the planted area immediately after planting. In both experiments, the two chemical molluscicides and nematodes applied once to the planted area at the standard field rate without previous application of cow manure, or twice at half standard rate, were able to reduce slug damage. Nematodes applied after manure did not reduce slug damage. None of the treatments reduced the numbers of slugs contaminating the harvested plants. Slug populations were assessed by means of soil sampling before and after Expts 2 and 3. Only after Expt 3 was there a significant effect of treatment on slug numbers, with significantly fewer in metaldehyde treated plots than in untreated plots.  相似文献   

3.
In two concurrent field experiments, the effects of three types of soil cultivation and two patterns of nematode application were studied in order to investigate their effects on damage to winter wheat by slugs (assessed at Zadoks Growth Stage 12). In experiment 1, infective juveniles (IJs) of the nematode Phasmarhabditis hermaphrodita were applied to soil as an overall spray or as a band spray (8-cm wide), centred on the drill rows (16.7-cm apart). Nematodes were either left undisturbed on the soil surface or harrowed into the soil immediately after application. The control provided by nematodes was compared with that provided by metaldehyde and methiocarb pellets broadcast at the recommended rate immediately after drilling. In this experiment, winter wheat on plots treated with IJs showed significantly less slug damage than on wheat plots treated with metaldehyde or methiocarb pellets or untreated plots. There was no significant difference in plant damage between plots treated with band and overall spray applications of IJs, nor was there any significant difference between plots with and without harrowing. There was also no significant difference between untreated plots and plots treated with metaldehyde or methiocarb pellets, probably because rainfall shortly after treatment rendered the pellets ineffective. In experiment 2, nematodes were applied as an overall spray or plots were not treated with nematodes before soil was cultivated with tines, Roterra or Dutzi cultivators. Nematode application before soil cultivation using tines or Roterra reduced the number of plants damaged significantly. However, nematodes applied before Dutzi cultivation appeared to be rendered ineffective. Damage to winter wheat was lowest in plots that had been sprayed with nematodes and subsequently cultivated with tines or Roterra.  相似文献   

4.
A field experiment on winter wheat in autumn 1991 investigated the effect of the rhabditid nematode, Phasmarhabditis hermaphrodita, applied to soil at five dose rates (108 - 1010 infective larvae ha-1) immediately after seed sowing, on slug populations and damage to seeds and seedlings. The nematode was compared with methiocarb pellets broadcast at recommended field rate immediately after drilling and no molluscicide treatment. Slug damage to wheat seeds and seedlings was assessed 6 and 13 wk after drilling. Seedling survival increased and slug grazing damage to seedlings declined linearly with increasing log nematode dose. These two measures of slug damage were combined to give an index of undamaged plant equivalents, which also increased linearly with increasing log nematode dose. ANOVA showed that, after 6 wk, there were significantly more undamaged plant equivalents on plots treated with the two highest nematode doses (3 × 109 and 1 × 1010 ha-1) than on untreated plots, but the number of undamaged plant equivalents on methiocarb-treated plots was not significantly greater than that on untreated plots. Slug populations were assessed by refuge trapping and soil sampling. Deroceras reticulatum was the commonest of several species of slugs recorded. During the first 4 wk after sowing, significantly more slugs were found under refuge traps on plots treated with certain doses of P. hermaphrodita than under traps on untreated plots and more showed signs of nematode infection than expected from the prevalence of infection in slugs from soil samples, suggesting that the presence of P. hermaphrodita altered slug behaviour. Application of P. hermaphrodita had no significant impact on numbers or biomass of slugs in soil during a 27 wk period after treatment, except after 5 wk when slug numbers were inversely related to log nematode dose. However, by this time, numbers in soil samples from untreated plots had declined to levels similar to those in plots treated with the highest dose of nematodes. During the first 5 wk after treatment, c. 20% of slugs in soil samples from untreated plots showed symptoms of nematode infection. It is suggested that this represented the background level of infection in the experimental field rather than spread of infection from treated plots. The apparent lack of impact of P. hermaphrodita on slug numbers and biomass in soil suggests that its efficacy in protecting wheat from slug damage was through inhibition of feeding by infected slugs.  相似文献   

5.
In a replicated field experiment, ryegrass, vetch and red clover were grown or the soil was kept bare over a 2–month period in summer to compare the effects of these treatments on slug damage to the following crop (Chinese cabbage) and on the efficacy of nematodes (Phasmarhabditis hermaphrodita) applied as biological control agents to the soil at planting time to protect this crop. Slug damage was significantly (c. two times) greater after red clover or vetch than after ryegrass. Damage on plots without cover crop was intermediate and not significantly different from either extreme. Slug damage was reduced by about one‐third by the nematode treatment. The preceding cover crop did not influence nematode efficacy. Numbers of slugs on harvested plants (mainly Deroceras reticulatum and Deroceras panormitanum) were influenced by an interaction between cover crop and nematode treatment. On subplots without nematodes, more slugs were recorded with than without a preceding cover crop. No such differences were found on nematode‐treated subplots. Soil samples were collected at intervals from 0–99 days after nematode treatment to monitor nematode survival and infectivity in bioassays with D. reticulatum. No significant effects of cover crops were detected in bioassays. Moreover, there were no significant effects of nematodes on slug survival. Their effects on slug food consumption were mostly insignificant and any effects were transient and not consistent. However, significantly more slug cadavers contained nematodes when slugs were exposed to nematode‐treated soil. The implications of these results are discussed.  相似文献   

6.
The polyphagous carabid beetle Abax parallelepipedus has been shown to be capable of controlling slugs within a lettuce crop in previous studies. This report describes experiments undertaken in plots within a polythene tunnel. Field slugs, Deroceras reticulatum, were introduced to plots containing either large or small lettuce plants, at 30 slugs per plot. The plots were further subdivided into those with or without six beetle predators. Slug numbers were assessed after two weeks, and were found to be affected by plant size, both with and without the presence of predators. These two factors had an additive effect, with both small plant size and the presence of beetles causing significant reductions in slug numbers. Plots with beetles contained either males or females, and females were shown to be significantly better at reducing slug numbers than males, particularly within plots of small plants. The four principal treatments (combinations of two plant sizes and the presence/absence of beetles) generated four distinct patterns of slug distribution within the plots. The potential of the residual slug populations to inflict further damage was measured in a subsequent crop of seedling lettuces. It appeared that the beetles were generally incapable of capturing slugs within large lettuce plants, but were effective predators at soil level. Possible reasons for the survival of fewer slugs in plots with small plants, both with and without the presence of predators, are discussed.  相似文献   

7.
The nematode Phasmarhabditis hermaphrodita, a parasite of slugs, was cultured in vitro and applied as a drench in two outdoor mini‐plot field experiments to test the capacity of the nematode to protect Chinese cabbage seedlings and wheat seeds from damage by the field slug Deroceras reticulatum. The first experiment compared a single dose of nematodes (2 X 1010 ha‐1) with methiocarb pellets added at the recommended field rate (5.5 kg.product ha‐1 ) and untreated plots. Plots treated with either nematodes or methiocarb pellets had significantly less slug damage than untreated plots and, from the third week onwards, there was significantly less slug damage on plots treated with nematodes than on methiocarb‐treated plots. At the end of the experiment, 6 weeks after treatment, both slug numbers and biomass were significantly higher in untreated plots than in either methiocarb‐treated or nematode‐treated plots. In the second experiment, six nematode doses ranging from 1 X 10 8 to 2 X 1010 ha‐1 were compared with a standard rate application of methiocarb pellets and untreated plots. Plant protection improved with increasing nematode dose between 1 X108 and 8 X 108ha‐1, but showed little or no further improvement at higher doses. Plant protection similar to that given by methiocarb pellets was provided by nematode doses of 8 X 108 ha‐1 and above.  相似文献   

8.
The nematode Phasmarhabditis hermaphrodita was applied to soil in an outdoor miniplot experiment to protect Chinese cabbage seedlings from damage by the field slug Deroceras reticulatum. The aim was to investigate the possibility of reducing the numbers of nematodes applied by only partially spraying soil in the area where slug control was needed. Nematodes sprayed as overall applications were compared with band applications along plant rows and spot applications around individual plants, in plots with nine or 18 plants. Band and spot applications were applied at two rates, designated the full rate (same number of nematodes per plot as in the overall application) and the area rate (same number of nematodes per unit area comprising 43% (band) and 18% (spot) of the overall application). In plots with 18 plants, where spot-treated plant alternated with untreated plants, no significant difference in damage was found between spot-treated plants and untreated plants. This indicates that slugs were not repelled from nematode-treated areas and that any effects in reducing slug damage were not due to repellency. All nematode treatments resulted in a significant reduction in the mean level of slug damage to seedlings from six or more days after treatment. However, there were significant interactions between nematode treatment, the number of plants per plot, the position of plants within plots (edge or middle) and time after treatment. The effect of time after treatment was modelled. The log time to 50% reduction in slug damage (t 50 ) was related to the area treated and the dose applied. In plots with band or spot treatments at the full dose, there was a relatively small increase in t 50 with declining area treated. In plots treated with band or spot treatments at the area dose, t 50 increased consistently with declining relative area treated. The final level of damage, expressed as a percentage of damage on untreated plots (P), was influenced by both the dose and area treated. Final damage was greatest on spoti treated plots where half the plants were untreated. We conclude that partial treatment of soil around all plants to be protected from slug damage is a potentially valuable method of reducing the overall nematode dose required for control of slug damage, provided that some damage can be tolerated.  相似文献   

9.
Slug problems in arable crops and vegetables have increased drastically during the past few decades. Observations on slug damage to oilseed rape suggested that fresh, anaerobically digested organic material from a biogas production plant is molluscicidal. To find out whether digested matter can be used for the control of agricultural pest slugs, a series of exeriments were carried out. The laboratory experiments demonstrated strong mollusc repellent and molluscicidal effects of digested organic matter against the three most important pest slugs of Switzerland, Arion lusitanicus, A. distinctus and Deroceras reticulatum. The effects were restricted to fresh digested matter and were rapidly lost when the material was stored, and also after application in the field. In the field experiment, fresh digested matter greatly reduced slug damage to lettuce in comparison with the untreated plots. At present, the chemical nature of the molluscicidal compound(s) in digested matter is unknown, but environmental pollutants such as heavy metals can be ruled out. Current research aims at a new formulation which is easier to apply and has a longer-lasting molluscicidal or slug-repellent effect, and at optimising the dosage and number of applications.  相似文献   

10.
The nematode Phasmarhabditis hermaphrodita is a commercially available biocontrol agent against slugs. This product is especially interesting for use in organic farming, where products containing metaldehyde or carbamates cannot be used for controlling pest slugs. We investigated the potential of P. hermaphrodita for the control of the pest slugs Deroceras reticulatum and Arion lusitanicus. These two species are the most harmful slug pests in Switzerland. At different times of the year, we collected slug specimens of different weight and assessed their susceptibility to P. hermaphrodita in the laboratory. Batches of five slugs were subjected to five different doses of nematodes plus an untreated control and replicated three times. During six weeks, feeding and survival of the slugs were recorded. D. reticulatum was strongly affected by increasing nematode doses, irrespective of the slugs' body weight. In small specimens of A. lusitanicus, feeding and survival were strongly affected by the nematodes, while larger specimens remained almost unaffected. Because A. lusitanicus has an asynchronous development in Switzerland, it seems difficult to control the entire population with a single nematode application. To what extent nematodes will be used in practice for slug control depends on their effectivity against the pest slugs of major importance, on the longevity of the molluscicidal effect and on the price of nematodes.  相似文献   

11.
The feeding deterrent effect of carvone on the slug Arion lusitanicus was investigated. Carvone, a natural compound from caraway seeds, was incorporated into mulch to reduce its inherent volatility. In a laboratory choice experiment, boxes were filled on one side with carvone‐treated mulch and on the other side with untreated mulch. At carvone concentrations ranging from 0.03–0.75 ml litre?1 mulch, slugs ate significantly more lettuce on the untreated side. In a laboratory based no‐choice experiment, carvone concentrations of 0.25 and 0.75 ml litre?1 mulch significantly reduced slug feeding in comparison with the untreated control. Moreover at the highest concentration of carvone (0.75 ml litre?1 mulch) 50% mortality was recorded over a period of 5 days, indicating a clear molluscicidal effect. Due to its volatility carvone did not decrease plant defoliation by A. lusitanicus when applied directly onto lettuce. Subsequent field evaluation showed 0.75 ml litre?1 mulch to partially reduce slug feeding damage. However, this effect was not sufficient to significantly increase lettuce yield. The incorporation of a higher carvone concentration into mulch is still to be tested to confirm whether carvone‐treated mulch can be recommended as an effective alternative approach to chemical slug control.  相似文献   

12.
Granular formulations containing eitherVerticillium chlamydosporiumorArthrobotrys dactyloideswere applied at 55–880 kg/ha in seven field trials on a range of soils in Queensland, Australia. Granules were incorporated into soil prior to planting tomatoes and the effectiveness of the formulated fungi in reducing damage caused by root-knot nematodes was compared to an untreated control and a granular formulation of fenamiphos. Formulations ofV. chlamydosporiumwere used in three experiments but the fungus did not increase egg parasitism or reduce galling or nematode numbers at harvest. Formulations containingA. dactyloideswere more effective, as galling was reduced 4–8 weeks after planting in four of five experiments. However, these effects generally disappeared later in the season, as significant reductions in galling were only observed in one of seven experiments at harvest. Fenamiphos generally reduced galling both at 4–8 weeks and at harvest. Yield increases due to fenamiphos or any of the biological treatments were not obtained in any experiment. The results suggested that formulations ofA. dactyloidesapplied at 220–440 kg/ha substantially reduced the number of nematodes present in roots 4–8 weeks after planting. Since tomato is relatively tolerant of nematode damage under the crop management systems used in northeastern Australia, such formulations could provide useful nematode control, particularly if used in conjunction with other control measures. However, formulations with greater biological activity will be needed if the level of nematode control obtained with chemical nematicides is to be achieved withA. dactyloides.  相似文献   

13.
The potential for reducing slug populations in crops through predation by generalist carabid beetles is well documented. However, few studies have considered interactions between biological and chemical control agents of slugs. Laboratory assays supported previous findings that the consumption of metaldehyde by slugs (Deroceras reticulatum) leads to increased duration of feeding bouts by carabid beetles (such as Pterostichini) on sub‐lethally affected individuals. However, a similar effect was not found for Pterostichus melanarius exposed to slugs fed on the other widely applied pelleted molluscicide formulation (methiocarb). Examination of beetle survival after consumption of slugs containing molluscicides demonstrated the strong biocidal properties of methiocarb, whereas metaldehyde consumption (ingested through slug predation) did not differ from control slugs killed by freezing. Beetle avoidance of slugs containing a more toxic molluscicide compound and the interaction between slug mucus production and beetle attack rates are discussed.  相似文献   

14.
The effects of soil cultivation immediately after application of the rhabditid nematode, Phasmarhabditis hermaphrodita , to the soil surface were investigated in two field experiments. The first experiment was done in mini-plots separated by barriers, with an artificially introduced population of slugs ( Deroceras reticulatum ). Nematodes were applied as a drench at a rate of 3 times 109 ha-1 in one of two application volumes and then left undisturbed or incorporated into the soil by cultivation to 2 cm or 10 cm depth. Moist soil conditions were maintained by irrigation throughout the experiment. Nematode application significantly reduced slug damage to Chinese cabbage seedlings throughout the 7 wk duration of the experiment and the population of D. reticulatum in soil 7 wk after treatment. However, soil cultivation had no effect and did not interact with the effect of nematodes. In the second experiment, in a crop of winter wheat, nematodes were applied to soil by hand-lance at a rate of 3 times 109 ha-1 and left undisturbed on the soil surface or incorporated by spring-tine cultivation to a depth of 2, 5 or 10 cm. In this experiment, nematodes were applied to dry soil. Cultivation alone had no effect. Nematode application reduced slug damage to wheat plants in plots where nematodes were incorporated into the soil, but not where they were left on the surface. There was no detectable impact of nematodes on slug populations in the wheat experiment.  相似文献   

15.
The field performance of molluscicidal baits used against slugpests of crops is normally measured by the numbers of dead animalsfound on the surface of plots which have been treated with differentbaits. This paper presents evidence that although some materialsseem to give high kills of the Grey Field Slug, Deroceras reticulatum(Müll.), the numbers of slugs left behind on the plotsafter such treatments, the residual population, are the sameas other plots where apparently fewer slugs have been killed.It thus seems likely that the field performance of baits containingmethiocarb and metaldehyde are very similar, both materialsproducing a similar reduction in the adult slug population. Field trials of mollusdcides should always attempt to measurethe residual population left behind on the plots and this wouldthen eliminate apparent errors in the interpretation of resultscaused by the dissimilar modes of action of the various materialsused as molluscicides. (Received 8 June 1982;  相似文献   

16.
During the 1991 and 1992 soybean growing seasons, field plots were established in South Carolina to study the effect of planting date on at-planting nematode densities and subsequent yield losses caused by Hoplolaimus columbus. The susceptible and intolerant soybean cv. Braxton was planted on five dates from to May to 28 June in 1991 and from 12 May to 28 June in 1992. Nematodes were recovered from soil samples collected before nematicide treatment with 1,3-D (Pi), at 6 weeks after planting (Pm), and at harvest (Pf). Initial nematode population densities did not differ among the five dates of planting in either year. The increase in numbers of nematodes from planting to 6 weeks after planting (Pm/Pi) and from planting to harvest (Pf/Pi) were not different among the five planting dates in either year. Root samples also were collected at 6 weeks after planting and at harvest, but planting date did not affect the number of nematodes extracted from roots on any sample date in either year. Altering planting dates between early May and late June was not effective in preventing yield suppression due to H. columbus.  相似文献   

17.
The effect of inoculating peanut, Arachis hypogaea cv. Sellie, with Ditylenchus destructor at timed intervals after planting and with different initial nematode population densities (Pi) was tested in greenhouse experiments. Final nematode population densities (Pf) in hulls and seeds were greater (Pf < 0.001) in plants inoculated at or before 9 weeks after planting. Pod disease symptoms correlated positively with the Pf in the pods. The seedgrade of peanuts inoculated at or before 9 weeks after planting was reduced, whereas grade of peanuts from plants inoculated at 15 weeks or later was not reduced. Peanut plants inoculated 12 weeks after planting with a Pi of 10-100 had a lower Pf (P < 0.05) than plants with a Pi of 250 to 8,000. Seed of plants with a Pi of 250 or less could be marketed as choice edible seed, whereas those with a Pi of 500 or more were of reduced seedgrade. These results suggest that as few as 500 nematodes per plant at 12 weeks after planting can build up to injurious levels before harvest. A nematicide should therefore be active for longer than 12 weeks after planting to sufficiently suppress the population.  相似文献   

18.
Developing effective restoration strategies requires first identifying the underlying factors limiting native plant recovery. The slug Deroceras reticulatum is an important herbivore in Europe, a global agricultural pest, and is introduced and abundant throughout eastern North America, but little information is available on the effect of this exotic herbivore on the forest herbaceous layer. Here, we test the palatability of 12 forest herbs to the introduced slug D. reticulatum and use field surveys to determine the degree to which slugs are damaging plants in the field. In laboratory feeding trials, slugs readily consumed most plants, but avoided the grass Elymus virginicus, the invasive forb Alliaria petiolata (garlic mustard), and thicker leaved plants. In the field, we documented significant slug damage, with close to 50% or more of plant leaves damaged by slugs on five of the six native species tested. Slug damage in the field was predicted by laboratory‐determined acceptability, but was significantly greater on short‐statured rosette species than on erect plants for a given acceptability value. Our results identify introduced slugs as an important, but overlooked obstacle to forest herb restoration and potential drivers of larger scale understory compositional change. The relaxed herbivore pressure on A. petiolata, relative to native competitors, suggests that invasive plant removal alone may not result in the recovery of native flora. Rather, restoration of unpalatable native species should accompany invasive plant control in slug invaded areas. Erect forbs, thick‐leaved plants, and graminoids should have the greatest success where introduced slugs are abundant.  相似文献   

19.
The efficacy of abamectin as a seed treatment for control of Meloidogyne incognita on cotton was evaluated in greenhouse, microplot, and field trials in 2002 and 2003. Treatments ranging from 0 to 100 g abamectin/100 kg seed were evaluated. In greenhouse tests 35 d after planting (DAP), plants from seed treated with abamectin were taller than plants from nontreated seed, and root galling severity and nematode reproduction were lower where treated seed were used. The number of second stage juveniles that had entered the roots of plants from seed treated with 100 g abamectin/kg seed was lower during the first 14 DAP than with nontreated seed. In microplots tests, seed treatment with abamectin and soil application of aldicarb at 840 g/kg of soil reduced the number of juveniles penetrating seedling roots during the first 14 DAP compared to the nontreated seedlings. In field plots, population densities of M. incognita were lower 14 DAP in plots that received seed treated with abamectin at 100 g/kg seed than where aldicarb (5.6 kg/ha) was applied at planting. Population densities were comparable for all treatments, including the nontreated controls, at both 21 DAP and harvest. Root galling severity did not differ among treatments at harvest.  相似文献   

20.
The southern root-knot nematode (Meloidogyne incognita) is a major parasite of cotton in the U.S., and management tactics for this nematode attempt to minimize population levels. We compared three post-harvest practices for their ability to reduce nematode population levels in the field, thereby reducing initial nematode population for the next year's crop. The three practices tested were: 1) chemical defoliation before harvest plus cutting cotton stalks after harvest, 2) chemical defoliation plus applying a herbicide to kill plants prior to cutting the stalks, and 3) chemical defoliation without cutting stalks. Experiments were conducted in both the greenhouse and in the field. The greenhouse experiments demonstrated that M. incognita reproduction (measured as egg counts and root gall rating indices) was significantly greater when stalks were not cut. Cutting stalks plus applying herbicide to kill cotton roots did not significantly reduce nematode reproduction compared to cutting stalks alone. In field experiments, cutting stalks reduced egg populations and root galling compared to defoliation without stalk cutting. In a greenhouse bioassay which used soil from the field plots, plants grown in soil from the defoliation only treatment had greater root gall ratings and egg counts than in the stalk cutting plus herbicide treatment. Therefore, we conclude that cutting cotton stalks immediately after harvest effectively reduces M. incognita reproduction, and may lead to a lower initial population density of this nematode in the following year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号