首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In humans, the Fc receptor for IgG, FcgammaRIIA, is expressed on macrophages and platelets and may play an important role in the pathophysiology of immune-mediated thrombocytopenia. Mice lack the genetic equivalent of human FcgammaRIIA. To better understand the role of FcgammaRIIA in vivo, FcgammaRIIA transgenic mice were generated and characterized. One transgenic mouse line expressed FcgammaRIIA on platelets and macrophages at levels equivalent to human cells, and cross-linking FcgammaRIIA on these platelets induced platelet aggregation. Immune-mediated thrombocytopenia in this transgenic line was studied using i.v. and i.p. administration of anti-mouse platelet Ab. In comparison with matched wild-type littermates that are negative for the FcgammaRIIA transgene, Ab-mediated thrombocytopenia was significantly more severe in the FcgammaRIIA transgenic mice. In contrast, FcR gamma-chain knockout mice that lack functional expression of the Fc receptors FcgammaRI and FcgammaRIII on splenic macrophages did not demonstrate Ab-mediated thrombocytopenia. We generated FcgammaRIIA transgenic x FcR gamma-chain knockout mice to examine the role of FcgammaRIIA in immune clearance in the absence of functional FcgammaRI and FcgammaRIII. In FcgammaRIIA transgenic x FcR gamma-chain knockout mice, severe immune thrombocytopenia mediated by FcgammaRIIA was observed. These results demonstrate that FcgammaRIIA does not require the FcR gamma-chain for expression or function in vivo. Furthermore, taken together, the data suggest that the human Fc receptor FcgammaRIIA plays a significant role in the immune clearance of platelets in vivo.  相似文献   

2.
Human neutrophils (PMNs) express two receptors for the Fc domain of IgG: the transmembrane FcgammaRIIA, whose cytosolic sequence contains an immunoreceptor tyrosine-based activation motif, and the GPI-anchored FcgammaRIIIB. Cross-linking of FcgammaRIIIB induces cell activation, but the mechanism is still uncertain. We have used mAbs to cross-link selectively each of the two receptors and to assess their signaling phenotypes and functional relation. Cross-linking of FcgammaRIIIB induces intracellular Ca2+ release and receptor capping. The Ca2+ response is blocked by wortmannin and by N,N-dimethylsphingosine, inhibitors of phosphatidylinositol 3-kinase and sphingosine kinase, respectively. Identical dose-response curves are obtained for the Ca2+ release stimulated by cross-linking FcgammaRIIA, implicating these two enzymes in a common signaling pathway. Wortmannin also inhibits capping of both receptors, but not receptor endocytosis. Fluorescence microscopy in double-labeled PMNs demonstrates that FcgammaRIIA colocalizes with cross-linked FcgammaRIIIB. The signaling phenotypes of the two receptors diverge only under frustrated phagocytosis conditions, where FcgammaRIIIB bound to substrate-immobilized Ab does not elicit cell spreading. We propose that FcgammaRIIIB signaling is conducted by molecules of FcgammaRIIA that are recruited to protein/lipid domains induced by clustered FcgammaRIIIB and, thus, are brought into juxtaposition for immunoreceptor tyrosine-based activation motif phosphorylation and activation of PMNs.  相似文献   

3.
4.
Spatial raft coalescence represents an initial step in Fc gamma R signaling   总被引:2,自引:0,他引:2  
Characterization of lipid rafts as separated membrane microdomains consist of heterogeneous proteins suggesting that lateral assembly of rafts after Ag receptor cross-linking represents the earliest signal generating process. In line with the concept, cross-linked Ag receptors have been shown to associate with detergent-insoluble raft fraction without the aid of Src family kinases. However, it has not been established whether spatial raft coalescence could also precede Src family kinase activation. In this study, we showed that spatial raft coalescence after low-affinity FcgammaR cross-linking in RAW264.7 macrophages is independent of Src family kinase activity. The lateral raft assembly was found to be ascribed to the action of ligand-binding subunits, rather than to immunoreceptor tyrosine-based activation motif-bearing signal subunits, because monomeric murine FcgammaRIIb expressed in rat basophilic leukemia cells successfully induced spatial raft reorganization after cross-linking. We also showed that extracellular and transmembrane region of FcgammaRIIb is sufficient for raft stabilization. Moreover, this receptor fragment triggers rapid calcium mobilization and linker for activation of T cells phosphorylation, in a manner sensitive to Src family kinase inhibition and to cholesterol depletion. Presence of immunoreceptor tyrosine-based inhibitory motif and addition of immunoreceptor tyrosine-based activation motif to the receptor fragment abolished and enhanced the responses, respectively, but did not affect raft stabilization. These findings support the concept that ligand-binding subunit is responsible for raft coalescence, and that this event triggers initial biochemical signaling.  相似文献   

5.
6.
Many human inflammatory diseases are associated with tissue deposition of immune complexes and influx of neutrophils. We show that immune complexes bind preferentially to apoptotic neutrophils via FcgammaRIIA (CD32) and that increased binding is associated with clustering of immune complexes on the plasma membrane of the apoptotic cell. Phagocytosis of immune complex-opsonized apoptotic neutrophils by human macrophages was substantially enhanced (4.4-fold increase compared with control apoptotic neutrophils) and stimulated macrophages to release the proinflammatory cytokines TNF-alpha and IL-6. Immune complexes may perturb the normal pathways for clearance of apoptotic neutrophils by augmenting their clearance at the price of proinflammatory cytokine release. This represents a novel mechanism by which immune complexes may modulate the resolution of inflammation.  相似文献   

7.
Fc receptors on leukocytes mediate internalization of antibody-containing complexes. Soluble immune complexes are taken up by endocytosis, while large antibody-opsonized particles are internalized by phagocytosis. We investigated the role of ubiquitylation in internalization of the human FcgammaRIIA receptor by endocytosis and phagocytosis. A fusion of FcgammaRIIA to green fluorescent protein (GFP) was expressed in ts20 cells, which bear a temperature-sensitive mutation in the E1 ubiquitin-activating enzyme. Uptake of soluble IgG complexes mediated by FcgammaRIIA-GFP was blocked by incubation at the restrictive temperature, indicating that endocytosis requires ubiquitylation. In contrast, phagocytosis and phagosomal maturation were largely unaffected when ubiquitylation was impaired. FcgammaRIIA-GFP was ubiquitylated in response to receptor cross-linking. Elimination of the lysine residues present in the cytoplasmic domain of FcgammaRIIA impaired endocytosis, but not phagocytosis. The proteasomal inhibitor clasto-lactacystin beta-lactone strongly inhibited endocytosis, but did not affect phagocytosis. These studies demonstrate a role for ubiquitylation in the endocytosis of immune receptors, and reveal fundamental differences in the mechanisms underlying internalization of a single receptor depending on the size or multiplicity of the ligand complex.  相似文献   

8.
The cellular responses initiated by cross-linking rodent Fc gamma RII-b1, Fc gamma RII-b2, Fc gamma RIII, and Fc epsilon RI in mast cells were compared. Individual murine Fc gamma R isoforms were transfected into rat basophilic leukemia cells and after cross-linking the FcR, changes in the phosphorylation of protein tyrosines, in the level of intracellular Ca2+, in the hydrolysis of phosphoinositides, and in the release of arachidonic acid metabolites and hexosaminidase were monitored. Cross-linking of Fc gamma RIII initiated all of these early and late biochemical functions, and although they were quantitatively somewhat smaller, the responses were qualitatively indistinguishable from those stimulated by the endogenous Fc epsilon RI. However, despite ample expression, neither Fc gamma RII-b1 nor Fc gamma RII-b2 stimulated these functions when cross-linked. The functional differences between Fc gamma RII and Fc gamma RIII were studied further by assessing the responses to cross-linking of the endogenous Fc gamma R (Fc gamma RII-b1, Fc gamma RII-b2, and Fc gamma RIII) on P815 mouse mastocytoma cells that had been transfected with normal or functionally defective Fc epsilon RI. Two types of mutant subunits had previously been observed to impair the activity of Fc epsilon RI: gamma-chains missing the cytoplasmic domain, and beta-chains missing the COOH-terminal cytoplasmic domain. In both types of transfectants the functional inhibition of the endogenous Fc gamma R paralleled that of the transfected Fc epsilon RI. These results are consistent with the gamma subunit being associated with the functions of Fc gamma RIII as well as of Fc epsilon RI. The functional results also complement the recently reported evidence that Fc gamma RIII can interact with Fc epsilon RI beta-subunits (J. Exp. Med. 175:447, 1992).  相似文献   

9.
The low affinity receptor for immunoglobulin G, FcgammaRIIA, is expressed in human platelets, mediates heparin-induced thrombocytopenia and participates to platelet activation induced by von Willebrand factor. In this work, we found that stimulation of platelets with agonists acting on G-protein-coupled receptors resulted in the tyrosine phosphorylation of FcgammaRIIA, through a mechanism involving a Src kinase. Treatment of platelets with the blocking monoclonal antibody IV.3 against FcgammaRIIA, but not with control IgG, inhibited platelet aggregation induced by TRAP1, TRAP4, the thromboxane analogue U46619, and low concentrations of thrombin. By contrast, platelet aggregation induced by high doses of thrombin was unaffected by blockade of FcgammaRIIA. We also found that the anti-FcgammaRIIA monoclonal antibody IV.3 inhibited pleckstrin phosphorylation and calcium mobilization induced by low, but not high, concentrations of thrombin. In addition, thrombin- or U46619-induced tyrosine phosphorylation of several substrates typically involved in FcgammaRIIA-mediated signalling, such as Syk and PLCgamma2, was clearly reduced by incubation with anti-FcgammaRIIA antibody IV.3. Upon stimulation with thrombin, FcgammaRIIA relocated in lipid rafts, and thrombin-induced tyrosine phosphorylation of FcgammaRIIA occurred within these membrane domains. Controlled disruption of lipid rafts by depleting membrane cholesterol prevented tyrosine phosphorylation of FcgammaRIIA and impaired platelet aggregation induced by U46619 or by low, but not high, concentrations of thrombin. These results indicate that FcgammaRIIA can be activated in human platelets downstream G-protein-coupled receptors and suggest a novel general mechanism for the reinforcement of platelet activation induced by low concentrations of agonists.  相似文献   

10.
Platelets provide a useful system for studying Fc gamma receptor-mediated signaling events because these cells express only a single class of Fc gamma receptors and because platelet aggregation and secretion can be activated through Fc gamma receptor stimulation. We report here that stimulation of platelets by cross-linking antibodies to Fc gamma RII or by treatment with an anti-CD9 monoclonal antibody, which acts through Fc gamma RII, causes an induction of tyrosine phosphorylation of multiple platelet proteins. Although the profile of tyrosine-phosphorylated proteins induced by stimulation of this Fc receptor was similar to that induced by thrombin, an additional 40-kDa phosphorylated protein was also detected. This protein co-migrated with Fc gamma RII and was immunoprecipitated with a monoclonal antibody to Fc gamma RII. In addition, after the cross-linking of Fc gamma RII in HEL cells or in COS-1 cells transfected with Fc gamma RII cDNA, the 40-kDa protein immunoprecipitated with anti-Fc gamma RII was also phosphorylated on tyrosine. These data strongly suggest that Fc gamma RII itself is a substrate for a tyrosine kinase(s) activated when Fc gamma RII is stimulated. Fc gamma RII was phosphorylated by the Src protein in vitro, suggesting that this kinase may be responsible for phosphorylation of Fc gamma RII in vivo. These studies establish that activation of platelets and human erythroleukemia cells through Fc gamma RII and CD9 involves an induction of tyrosine phosphorylation of multiple proteins including Fc gamma RII itself and suggest that these phosphorylation events may be involved in Fc gamma RII-mediated cell signaling.  相似文献   

11.
Fc gamma Rs mediate immune complex-induced tissue injury. The hypothesis that Fc gamma RIIa and Fc gamma RIIIb control neutrophil responses by activating mitogen-activated protein kinases was examined. Homotypic and heterotypic cross-linking of Fc gamma RIIa and/or Fc gamma RIIIb resulted in a rapid, transient increase in ERK and p38 activity, with maximal stimulation between 1 and 3 min. Fc gamma RIIa and Fc gamma RIIIb stimulated distinct patterns of ERK and p38 activity, and heterotypic cross-linking failed to stimulate synergistic activation of either ERK or p38 activity. Both Fc gamma RIIa and Fc gamma RIIIb required activation of a nonreceptor tyrosine kinase and phosphatidylinositol 3-kinase for stimulation of ERK and p38. Inhibition of ERK activation with PD98059 enhanced H2O2 production stimulated by homotypic and heterotypic Fc gamma R cross-linking. Inhibition of p38 with SB203580 attenuated H2O2 production stimulated by Fc gamma RIIIb or heterotypic cross-linking, but had no effect on Fc gamma RIIa-stimulated H2O2 production. On the other hand, PD98059 inhibited actin polymerization stimulated by Fc gamma R cross-linking, while SB203580 had no effect. Inhibition of actin polymerization with cytochalasin D enhanced p38 activity stimulated by either Fc gamma RIIa or Fc gamma RIIIb, but cytochalasin D only enhanced H2O2 production stimulated by Fc gamma RIIIb. Our data indicate that Fc gamma RIIa and Fc gamma RIIIb independently activate ERK and p38. The two receptors demonstrate different efficacies for ERK and p38 activation, and they do not act cooperatively. ERK and p38 provide stimulatory and inhibitory signals for neutrophil responses to immune complexes. In addition, these data indicate that actin reorganization may play a role in mediating p38-dependent activation of respiratory burst upon stimulation of Fc gamma RIIIb in neutrophils.  相似文献   

12.
The tyrosine phosphorylation cascade originated from Fc gamma receptors (Fc gamma Rs) is essential for macrophage functions including phagocytosis. Although the initial step is ascribed to Src family tyrosine kinases, the role of individual kinases in phagocytosis signaling is still to be determined. In reconstitution experiments, we first showed that expression in the RAW 264.7 cell line of C-terminal Src kinase (Csk) inhibited and that of a membrane-anchored, gain-of-function Csk abolished the Fc gamma R-mediated signaling that leads to phagocytosis in a kinase-dependent manner. We next tested reconstruction of the signaling in the membrane-anchored, gain-of-function Csk-expressing cells by introducing Src family kinases the C-terminal negative regulatory sequence of which was replaced with a c-myc epitope. Those constructs derived from Lyn and Hck (a-Lyn and a-Hck) that associated with detergent-resistant membranes successfully reconstructed Fc gamma R-mediated Syk activation, filamentous actin rearrangement, and phagocytosis. In contrast, c-Src-derived construct (a-Src), that was excluded from detergent-resistant membranes, could not restore the series of phagocytosis signaling. Tyrosine phosphorylation of Vav and c-Cbl was restored in common by a-Lyn, a-Hck, and a-Src, but Fc gamma RIIB tyrosine phosphorylation, which is implicated in negative signaling, was reconstituted solely by a-Lyn and a-Hck. These findings suggest that Src family kinases are differentially involved in Fc gamma R-signaling and that selective kinases including Lyn and Hck are able to fully transduce phagocytotic signaling.  相似文献   

13.
Tyrosine phosphorylation of several cellular proteins is one of the earliest signaling events induced by cross-linking of the high-affinity receptor for immunoglobulin E (Fc epsilon RI) on mast cells or basophils. Tyrosine kinases activated during this process include the Src family kinases, Lyn, c-Yes, and c-Src, and members of another subfamily, Syk and PTK72 (identical or highly related to Syk). Recently, some of us described two novel tyrosine kinases, Emb and Emt, whose expression was limited to subsets of hematopoietic cells, including mast cells. Emb turned out to be identical to Btk, a gene product defective in human X-linked agammaglobulinemia and in X-linked immunodeficient (xid) mice. Here we report that Fc epsilon RI cross-linking induced rapid phosphorylation on tyrosine, serine, and threonine residues and activation of Btk in mouse bone marrow-derived mast cells. A small fraction of Btk translocated from the cytosol to the membrane compartment following receptor cross-linking. Tyrosine phosphorylation of Btk was not induced by either a Ca2+ ionophore (A23187), phorbol 12-myristate 13-acetate, or a combination of the two reagents. Co-immunoprecipitation between Btk and receptor subunit beta or gamma was not detected. The data collectively suggest that Btk is not associated with Fc epsilon but that its activation takes place prior to protein kinase C activation and plays a novel role in the Fc epsilon RI signaling pathway.  相似文献   

14.
The cross-linking of the B cell Ag receptor (BCR) leads to the initiation of a signal transduction cascade in which the earliest events involve the phosphorylation of the immunoreceptor tyrosine-based activation motifs of Ig alpha and Ig beta by the Src family kinase Lyn and association of the BCR with the actin cytoskeleton. However, the mechanism by which BCR cross-linking initiates the cascade remains obscure. In this study, using various A20-transfected cell lines, biochemical and genetic evidence is provided that BCR cross-linking leads to the translocation of the BCR into cholesterol- and sphingolipid-rich lipid rafts in a process that is independent of the initiation of BCR signaling and does not require the actin cytoskeleton. Translocation of the BCR into lipid rafts did not require the Ig alpha/Ig beta signaling complex, was not dependent on engagement of the FcR, and was not blocked by the Src family kinase inhibitor PP2 or the actin-depolymerizing agents cytochalasin D or latrunculin. Thus, cross-linking or oligomerization of the BCR induces the BCR translocation into lipid rafts, defining an event in B cell activation that precedes receptor phosphorylation and association with the actin cytoskeleton.  相似文献   

15.
The biological effects of rIgG(1) 13B8.2, directed against the CDR3-like loop on the D1 domain of CD4, are partly due to signals that prevent NF-kappaB nuclear translocation, but the precise mechanisms of action, particularly at the level of membrane proximal signaling, remain obscure. We support the hypothesis that rIgG(1) 13B8.2 acts by interfering with the spatiotemporal distribution of signaling or receptor molecules inside membrane rafts. Upon cross-linking of Jurkat T lymphocytes, rIgG(1) 13B8.2 was found to induce an accumulation/retention of the CD4 molecule inside polyoxyethylene-20 ether Brij 98 detergent-resistant membranes at 37 degrees C, together with recruitment of TCR, CD3zeta, p56 Lck, Lyn, and Syk p70 kinases, linker for activation of T cells, and Csk-binding protein/phosphoprotein associated with glycosphingolipid adaptor proteins, and protein kinase Ctheta, but excluded Zap70 and its downstream targets Src homology 2-domain-containing leukocyte protein of 76 kDa, phospholipase Cgamma1, and p95(vav). Analysis of key upstream events such as Zap70 phosphorylation showed that modulation of Tyr(292) and Tyr(319) phosphorylation occurred concomitantly with 13B8.2-induced Zap70 exclusion from the membrane rafts. 13B8.2-induced differential raft partitioning was epitope, cholesterol, and actin dependent but did not require Ab hyper-cross-linking. Fluorescence confocal imaging confirmed the spatiotemporal segregation of the CD4 complex inside rafts and concomitant Zap70 exclusion, which occurred within 10-30 s following rIgG(1) 13B8.2 ligation, reached a plateau at 1 min, and persisted until the end of the 1-h experiment. The differential spatiotemporal partitioning between the CD4 receptor and the Zap70-signaling kinase inside membrane rafts interrupts the proximal signal cross-talk leading to subsequent NF-kappaB nuclear translocation and explains how baculovirus-expressed CD4-CDR3-like-specific rIgG(1) 13B8.2 acts to induce its biological effects.  相似文献   

16.
Many studies have shown that FcgammaRIIB is a negative regulator of B cell receptor signaling, and even though FcgammaRIIB is expressed through all developmental stages of the B cell lineage, its involvement in pre-B cell receptor (pre-BCR) signaling has not been examined. To investigate FcgammaRIIB function at the pre-B cell stage, we have established pre-BCR positive pre-B cell lines from normal mice and FcgammaRIIB-deficient mice, named PreBR and Fcgamma(-/-)PreBR, respectively. These cell lines are able to differentiate into immature B cells in vitro by removal of IL-7. In PreBR, apoptosis was moderately induced by F(ab')(2) anti-mu Ab, but not by intact anti-mu Ab. Phosphorylation of SH2-containing inositol 5-phosphatase (SHIP) and Dok, which are involved in FcgammaRIIB signaling, was induced by anti-mu cross-linking in PreBR. In contrast, apoptosis was strongly induced by both the F(ab')(2) and intact anti-mu Abs in Fcgamma(-/-)PreBR, and the level of phosphorylation of SHIP or Dok was much lower in Fcgamma(-/-)PreBR than those observed in PreBR. Restoration of FcgammaRIIB to Fcgamma(-/-)PreBR followed by anti-mu cross-linking blocked severe apoptosis, and up-regulated SHIP and Dok phosphorylation. The results demonstrate that FcgammaRIIB negatively regulates pre-BCR-mediated signaling for apoptosis.  相似文献   

17.
18.
Human polymorphonuclear neutrophils (PMN) express the low affinity receptors for the Fc domain of IgG (Fc gamma R), Fc gamma RII (CD32), and the glycosyl phosphatidylinositol-linked isoform of Fc gamma RIII (Fc gamma RIIIB, CD16) on their cell surface. Both of these receptors have been shown to be signal-transducing molecules. However, the mechanisms involved in such signaling are not clearly understood. In this report, we investigated intracellular Ca2+ ([Ca2+]i) signals triggered in PMN by both the receptors using aggregated human IgG (AggIgG) and specific mAb to Fc gamma RII (KuFc79) and Fc gamma RIII (3G8) as ligands. Addition of AggIgG as well as cross-linking of mAb KuFc79 and 3G8 bound to PMN induced [Ca2+]i flux. However, preincubation of PMN with mAb KuFc79 (whole Ig or Fab fragments) in the absence of cross-linking abrogated the [Ca2+]i flux induced by AggIgG and mAb 3G8, indicating that Fc gamma RII receptor occupancy by mAb KuFc79 can block signals mediated by Fc gamma RIIIB. KuFc79-isotype-matched control mAb (MOPC 195) did not abolish the signals generated by AggIgG and mAb 3G8. In addition, mAb KuFc79 did not abrogate [Ca2+]i responses elicited by the receptor for the chemotactic peptide FMLP indicating that modulation of signal transduction by Fc gamma RII-bound KuFc79 is selective for certain receptors. Immunofluorescence analysis of PMN initially treated with mAb KuFc79 followed by AggIgG showed that KuFc79 did not block the binding of AggIgG to PMN. Similarly, competitive binding studies revealed no stearic hindrance between mAb KuFc79 bound to Fc gamma RII and mAb 3G8 bound to Fc gamma RIIIB. Thus, the ability of mAb KuFc79 to modulate signals induced by AggIgG and 3G8 strongly suggests that Fc gamma RII may regulate Fc gamma RIIIB signaling. While previous studies on Fc gamma RII revealed a requirement for cross-linking of the receptor to induce its effector functions, the present study shows that binding of mAb KuFc79 to Fc gamma RII itself, even in a univalent form, results in cross-regulation of Fc gamma RIIIB-triggered signals. Treatment of PMN with protein tyrosine kinase inhibitors, genistein and herbimycin A, abrogated the [Ca2+]i signals elicited by both mAb KuFc79 and 3G8. These results suggest that tyrosine kinase enzyme(s) associated with these receptors may be crucial for positive/negative signals triggered by Fc gamma RII and Fc gamma RIIIB.  相似文献   

19.
Fc gammaR mediate the phagocytosis of IgG-coated particles and the clearance of IgG immune complexes. By dissecting binding from internalization of the particles, we found that the binding stage, rather than particle internalization, triggered tyrosine phosphorylation of Fc gammaR and accompanying proteins. High amounts of Lyn kinase were found to associate with particles isolated at the binding stage from J774 cells. PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), an Src kinase inhibitor, but not piceatannol, an inhibitor of Syk kinase, reduced the amount of Lyn associated with the bound particles and simultaneously diminished the binding of IgG-coated particles. Studies of baby hamster kidney cells transfected with wild-type and mutant Fc gammaRIIA revealed that the ability of the receptor to bind particles was significantly reduced when phosphorylation of the receptor was abrogated by Y298F substitution in the receptor signaling motif. Under these conditions, binding of immune complexes of aggregated IgG was depressed to a lesser extent. A similar effect was exerted on the binding ability of wild-type Fc gammaRIIA by PP2. Moreover, expression of mutant kinase-inactive Lyn K275R inhibited both Fc gammaRIIA phosphorylation and IgG-opsonized particle binding. To gain insight into the mechanism by which protein tyrosine phosphorylation can control Fc gammaR-mediated binding, we investigated the efficiency of clustering of wild-type and Y298F-substituted Fc gammaRIIA upon binding of immune complexes. We found that a lack of Fc gammaRIIA phosphorylation led to an impairment of receptor clustering. The results indicate that phosphorylation of Fc gammaR and accompanying proteins, dependent on Src kinase activity, facilitates the clustering of activated receptors that is required for efficient particle binding.  相似文献   

20.
Interaction of the platelet GPIb-V-IX complex with surface immobilized von Willebrand factor (vWf) is required for the capture of circulating platelets and their ensuing activation. In previous work, it was found that GPIb/vWf-mediated platelet adhesion triggers Ca2+ release from intracellular stores, leading to cytoskeletal reorganization and filopodia extension. Despite the potential functional importance of GPIb-induced cytoskeletal changes, the signaling mechanisms regulating this process have remained ill-defined. The studies presented here demonstrate an important role for phospholipase C (PLC)-dependent phosphoinositide turnover for GPIb-dependent cytoskeletal remodeling. This is supported by the findings that the vWf-GPIb interaction induced a small increase in inositol 1,4,5-triphosphate (IP3) and that treating platelets with the IP3 receptor antagonist APB-2 or the PLC inhibitor U73122 blocked cytosolic Ca2+ flux and platelet shape change. Normal shape change was observed in G alpha q-/- mouse platelets, excluding a role for PLC beta isoforms in this process. However, decreased shape change and Ca2+ mobilization were observed in mice lacking PLC gamma 2, demonstrating that this isotype played an important, albeit incomplete, role in GPIb signaling. The signaling pathways utilized by GPIb involved one or more members of the Src kinase family as platelet shape change and Ca2+ flux were inhibited by the Src kinase inhibitors PP1 and PP2. Strikingly, shape change and Ca2+ release occurred independently of immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors, because these platelet responses were normal in human platelets treated with the anti-Fc gamma RIIA blocking monoclonal antibody IV.3 and in mouse platelets deficient in the FcR gamma chain. Taken together, these studies define an important role for PLC gamma 2 in GPIb signaling linked to platelet shape change. Moreover, they demonstrate that GPIb-dependent calcium flux and cytoskeletal reorganization involves a signaling pathway distinct from that utilized by ITAM-containing receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号