首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB–deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB–deficient cells and tissues from CypB–knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.  相似文献   

2.
The structural polymeric collagen of the skin of 19 patients with osteogenesis imperfecta has been examined. In those with severe bone disease, who often have white sclerae, this collagen fraction is less resistant to depolymerization than that of age-matched controls, though the total amount is normal. In patients with less severe bone disease, whose sclerae are usually blue, the polymeric collagen may have normal stability but the total amount is reduced. These results suggest defective cross-linking of collagen in severe osteogenesis imperfecta.  相似文献   

3.
Osteogenesis imperfecta (OI) is a genetic disorder in collagen characterized by mechanically weakened tendon, fragile bones, skeletal deformities, and in severe cases, prenatal death. Although many studies have attempted to associate specific mutation types with phenotypic severity, the molecular and mesoscale mechanisms by which a single point mutation influences the mechanical behavior of tissues at multiple length scales remain unknown. We show by a hierarchy of full atomistic and mesoscale simulation that OI mutations severely compromise the mechanical properties of collagenous tissues at multiple scales, from single molecules to collagen fibrils. Mutations that lead to the most severe OI phenotype correlate with the strongest effects, leading to weakened intermolecular adhesion, increased intermolecular spacing, reduced stiffness, as well as a reduced failure strength of collagen fibrils. We find that these molecular-level changes lead to an alteration of the stress distribution in mutated collagen fibrils, causing the formation of stress concentrations that induce material failure via intermolecular slip. We believe that our findings provide insight into the microscopic mechanisms of this disease and lead to explanations of characteristic OI tissue features such as reduced mechanical strength and a lower cross-link density. Our study explains how single point mutations can control the breakdown of tissue at much larger length scales, a question of great relevance for a broad class of genetic diseases.  相似文献   

4.
Close packing of three chains in a standard collagen triple helix requires Gly as every third residue. Missense mutations replacing one Gly by a larger residue in the tripeptide repeating sequence in type I collagen are common molecular causes of osteogenesis imperfecta. The structural and dynamic consequences of such mutations are addressed here by NMR studies on a peptide with a Gly-to-Ser substitution within an α1(I) sequence. Distances derived from nuclear Overhauser effects indicate that the three Ser residues are still packed in the center of the triple helix and that the standard 1-residue stagger is maintained. NMR dynamics using H-exchange and temperature-dependent amide chemical shifts indicate a greater disruption of hydrogen bonding and/or increased conformational flexibility C-terminal to the Ser site when compared with N terminal. This is consistent with recent suggestions relating clinical severity with an asymmetric effect of residues N- versus C-terminal to a mutation site. Dynamic studies also indicate that the relative position between a Gly in one chain and the mutation site in a neighboring staggered chain influences the disruption of the standard hydrogen-bonding pattern. The structural and dynamic alterations reported here may play a role in the etiology of osteogenesis imperfecta by affecting collagen secretion or interactions with other matrix molecules.Mutations in collagen result in a variety of connective tissue diseases (1, 2), with the clinical phenotype depending on the location and function of the collagen type. For instance, mutations in type I collagen, the major collagen in bone, lead to a bone disorder, osteogenesis imperfecta (OI),3 whereas mutations in type III collagen, which is present in high amounts in blood vessels, lead to aortic rupture in Ehlers-Danlos syndrome type IV (1, 2). All collagens have a triple helix motif composed of three polyproline II-like chains that are staggered by 1 residue and supercoiled about a common axis. The smallest residue Gly is typically present as every 3rd residue in each chain because of the tight packing of the chains, which generates the characteristic (Gly-Xaa-Yaa)n repeating sequence. The Gly residues are all buried in the center, and the structure is stabilized by interchain N–H (Gly) … CO (Xaa) hydrogen bonds (35). The most common type of mutation leading to collagen disorders is a missense mutation that replaces 1 Gly in the repeating sequence by a larger residue.The best characterized collagen disease is OI, or brittle bone disease, which is distinguished by fragile bones due to mutations in type I collagen (2, 6). More than 400 Gly substitution missense mutations in the α1(I) and α2(I) chains of type I collagen have been reported to lead to OI (7). The severity of the disease varies widely from mild cases with multiple fractures to perinatal lethal cases (2, 6, 7). A single base change in a Gly codon can lead to one of 8 residues (Ser, Ala, Cys, Val, Arg, Asp, Glu, Trp) or a missense mutation. The smallest residue Ala is underrepresented in OI, suggesting that it may not always lead to pathology, whereas Ser mutations are overrepresented, corresponding to the most common substitutions observed. The 152 mutations leading to a Gly to Ser substitution account for ∼39% of all missense mutations in the α1(I) of type I collagen (7), with 115 associated with mild phenotypes and 37 associated with lethal phenotypes.The identity of the residue replacing Gly may be a determinant in the clinical severity of OI. Model peptide studies indicate that the degree of triple helix destabilization depends on the residue replacing Gly, with a ranking of the least destabilizing to the most destabilizing Ala,Ser8). There is some correlation between clinical severity of OI cases and this destabilization scale, with the strongly destabilizing residues Val, Arg, Asp, and Glu associated largely with lethal phenotypes (8). However, as cited above, a Gly to Ser mutation can lead to a mild, a severe, or a lethal OI case, with no obvious molecular explanation. Other factors suggested to contribute to clinical phenotype include the rigidity of its immediate sequence environment; its location with respect to the C terminus; its proximity to salt bridges; and its presence at an interaction site, such as the binding site for proteoglycans on collagen fibrils (7, 9). A recent study of the stability of OI collagens supported the importance of the domain location of the mutation (10), whereas a network analysis of the mutations suggested the importance of a destabilizing tripeptide sequence C-terminal to the mutation site (11).The standard triple helix conformation must undergo some structural perturbation as a result of a Gly replacement that is likely to relate to the development of the disorder. Thus it is important to define the structural consequences of a Gly substitution. It has not proved possible to obtain molecular information for the long collagen molecules themselves, but model collagen peptides have proved amenable to x-ray crystallography and NMR techniques (12, 13). The structure of a peptide containing a Gly to Ala substitution near the center of the peptide (Pro-Hyp-Gly)10 has been solved by x-ray crystallography (5). This structure shows an overall straight molecule with standard triple helical structures at both ends and a localized conformational deformation at the Ala replacement site. The direct N–H (Gly) … CO (Xaa) hydrogen bond is replaced by a water-mediated hydrogen bond N–H (Ala) … H2O … CO (Xaa).Here, NMR spectroscopy is used to define the structural and dynamic effect of a Gly to Ser replacement through the application of recently developed NMR methodology on selectively 13C/15N doubly labeled collagen peptides (14). This strategy includes chain assignments, measurement of NOEs, and scalar J-couplings to define the conformation of the peptide. These results combined with NMR hydrogen exchange experiments and temperature-dependent chemical shift data demonstrate the disturbed dynamic features and hydrogen bonding around the Ser substitution site. The NMR data of the Gly to Ser peptide are compared with the NMR and x-ray high resolution structure of the peptide containing a Gly to Ala substitution (5).  相似文献   

5.
6.

Background

The confirmatory diagnosis of Osteogenesis Imperfecta (OI) requires invasive, commonly bone biopsy, time consuming and destructive methods. This paper proposes an alternative method using a combination of two-photon excitation fluorescence (TPEF) and second-harmonic generation (SHG) microscopies from easily obtained human skin biopsies. We show that this method can distinguish subtypes of human OI.

Methodology/Principal Findings

Different aspects of collagen microstructure of skin fresh biopsies and standard H&E-stained sections of normal and OI patients (mild and severe forms) were distinguished by TPEF and SHG images. Moreover, important differences between subtypes of OI were identified using different methods of quantification such as collagen density, ratio between collagen and elastic tissue, and gray-level co-occurrence matrix (GLCM) image-pattern analysis. Collagen density was lower in OI dermis, while the SHG/autofluorescence index of the dermis was significantly higher in OI as compared to that of the normal skin. We also showed that the energy value of GLCM texture analysis is useful to discriminate mild from severe OI and from normal skin.

Conclusions/Significance

This work demonstrated that nonlinear microscopy techniques in combination with image-analysis approaches represent a powerful tool to investigate the collagen organization in skin dermis in patients with OI and has the potential to distinguish the different types of OI. The procedure outlined in this paper requires a skin biopsy, which is almost painless as compared to the bone biopsy commonly used in conventional methods. The data presented here complement existing clinical diagnostic techniques and can be used as a diagnostic procedure to confirm the disease, evaluate its severity and treatment efficacy.  相似文献   

7.
Bone has a complex hierarchical structure that has evolved to serve structural and metabolic roles in the body. Due to the complexity of bone structure and the number of diseases which affect the ultrastructural constituents of bone, it is important to develop quantitative methods to assess bone nanoscale properties. Autosomal dominant Osteogenesis Imperfecta results predominantly from glycine substitutions (80%) and splice site mutations (20%) in the genes encoding the α1 or α2 chains of Type I collagen. Genotype–phenotype correlations using over 830 collagen mutations have revealed that lethal mutations are located in regions crucial for collagen–ligand binding in the matrix. However, few of these correlations have been extended to collagen structure in bone. Here, an atomic force microscopy-based approach was used to image and quantitatively analyze the D-periodic spacing of Type I collagen fibrils in femora from heterozygous (Brtl/+) mice (α1(I)G349C), compared to wild type (WT) littermates. This disease system has a well-defined change in the col1α1 allele, leading to a well characterized alteration in collagen protein structure, which are directly related to altered Type I collagen nanoscale morphology, as measured by the D-periodic spacing. In Brtl/+ bone, the D-periodic spacing shows significantly greater variability on average and along the length of the bone compared to WT, although the average spacing was unchanged. Brtl/+ bone also had a significant difference in the population distribution of collagen D-period spacings. These changes may be due to the mutant collagen structure, or to the heterogeneity of collagen monomers in the Brtl/+ matrix. These observations at the nanoscale level provide insight into the structural basis for changes present in bone composition, geometry and mechanical integrity in Brtl/+ bones. Further studies are necessary to link these morphological observations to nanoscale mechanical integrity.  相似文献   

8.
Osteogenesis imperfecta (OI) is characterized by bone fragility and fractures that may be accompanied by bone deformity, dentinogenesis imperfecta, short stature, and shortened life span. About 90% of individuals with OI have dominant mutations in the type I collagen genes COL1A1 and COL1A2. Recessive forms of OI resulting from mutations in collagen-modifying enzymes and chaperones CRTAP, LEPRE1, PPIB, and FKBP10 have recently been identified. We have identified an autosomal-recessive missense mutation (c.233T>C, p.Leu78Pro) in SERPINH1, which encodes the collagen chaperone-like protein HSP47, that leads to a severe OI phenotype. The mutation results in degradation of the endoplasmic reticulum resident HSP47 via the proteasome. Type I procollagen accumulates in the Golgi of fibroblasts from the affected individual and a population of the secreted type I procollagen is protease sensitive. These findings suggest that HSP47 monitors the integrity of the triple helix of type I procollagen at the ER/cis-Golgi boundary and, when absent, the rate of transit from the ER to the Golgi is increased and helical structure is compromised. The normal 3-hydroxylation of the prolyl residue at position 986 of the triple helical domain of proα1(I) chains places the role of HSP47 downstream from the CRTAP/P3H1/CyPB complex that is involved in prolyl 3-hydroxylation. Identification of this mutation in SERPINH1 gives further insight into critical steps of the collagen biosynthetic pathway and the molecular pathogenesis of OI.  相似文献   

9.
Osteogenesis imperfecta (OI) is a genetically heterogeneous disease leading to bone fragility. OI-VI is an autosomal-recessive form caused by mutations in SERPINF1. There is experimental evidence suggesting that loss of functional SERPINF1 leads to an activation of osteoclasts via the RANK/RANKL pathway. Patients with OI-VI show a poor response to bisphosphonates. We report on four children with OI-VI who had shown continuously elevated urinary bone resorption markers during a previous treatment with bisphosphonates. We treated these children with the RANKL antibody denosumab to reduce bone resorption. Intervention and results: Denosumab (1 mg/kg body weight) was injected s.c. every 3 months. There were no severe side effects. Markers of bone resorption decreased to the normal range after each injection. N-terminal Propeptide of collagen 1 was measured in the serum during the first treatment cycle and decreased also. Urinary deoxypyridinoline/creatinine was monitored in a total of seven treatment cycles and indicated that bone resorption reached the pre-treatment level after 6-8 weeks. Conclusion: This was the first use of denosumab in children with OI-VI. Denosumab was well tolerated, and laboratory parameters provided evidence that the treatment reversibly reduced bone resorption. Therefore, denosumab may be a new therapeutic option for patients with OI-VI.  相似文献   

10.
Osteogenesis imperfecta (OI) type V is an autosomal-dominant disease characterized by calcification of the forearm interosseous membrane, radial head dislocation, a subphyseal metaphyseal radiodense line, and hyperplastic callus formation. The causative mutation, c.-14C>T in the 5''-untranslated region of IFITM5, was recently discovered to be involved in this disease. However, in spite of the little genotypic variability, considerable phenotypic variability has been recognized in two cohorts of patients, the majority of whom were Caucasians. Using exome sequencing, we identified the same heterozygous mutation in four Chinese families with OI type V. This study confirms the molecular cause of OI type V and describes the phenotype of Chinese patients with this disorder. In conclusion, the phenotype of Chinese patients was generally similar to that of Caucasian patients.  相似文献   

11.
ObjectiveTo evaluate the genotype-phenotype relationship and the effect of treatment on the clinical course of osteogenesis imperfecta (OI).MethodsWe established a Chinese hospitalized cohort with OI and followed them up for an average of 6 years. All patients were confirmed as having OI using whole-exome sequencing. We analyzed the genotype-phenotype relationship based on different types, pathogenic mechanisms, and gene inheritance patterns of OI. Additionally, we assessed whether there was a difference in treatment efficacy based on genotype.ResultsOne hundred sixteen mutations in 6 pathogenic genes (COL1A1, COL1A2, IFITM5, SERPINF1, FKBP10, and WNT1) were identified in 116 patients with type I, III, IV, V, VI, XI, or XV OI. Compared with patients with COL1A1 mutations, patients with COL1A2 mutations were younger at the time of the first fracture, whereas other phenotypes were similar. When 3 groups (helical, haploinsufficiency, and non-collagen I gene mutations) were compared, patients with helical mutations were the shortest and most prone to dentinogenesis imperfecta. Patients with haploinsufficiency mutations were the oldest at the time of the first fracture. Moreover, patients with non-collagen I gene mutations were least susceptible to blue sclerae and had the highest fracture frequency. Furthermore, there were some minor phenotypic differences among non-collagen I gene mutations. Interestingly, pamidronate achieved excellent results in the treatment of patients with OI, and the treatment effect appeared to be unrelated to their genotypes.ConclusionOur findings indicated a genotype-phenotype relationship and a similar effect of pamidronate treatment in patients with OI, which could provide a basis for guiding clinical treatment and predicting OI prognosis.  相似文献   

12.
Osteogenesis imperfecta (OI) is a heterogenous group of genetic disorders of bone fragility. OI type V is an autosomal-dominant disease characterized by calcification of the forearm interosseous membrane, radial head dislocation, a subphyseal metaphyseal radiodense line, and hyperplastic callus formation; the causative mutation involved in this disease has not been discovered yet. Using linkage analysis in a four-generation family and whole-exome sequencing, we identified a heterozygous mutation of c.-14C>T in the 5'-untranslated region of a gene encoding interferon-induced transmembrane protein 5 (IFITM5). It completely cosegregated with the disease in three families and occurred de novo in five simplex individuals. Transfection of wild-type and mutant IFITM5 constructs revealed that the mutation added five amino acids (Met-Ala-Leu-Glu-Pro) to the N terminus of IFITM5. Given that IFITM5 expression and protein localization is restricted to the skeletal tissue and IFITM5 involvement in bone formation, we conclude that this recurrent mutation would have a specific effect on IFITM5 function and thus cause OI type V.  相似文献   

13.
14.
Fibrillar type I collagen is the major organic component in bone, providing a stable template for mineralization. During collagen biosynthesis, specific hydroxylysine residues become glycosylated in the form of galactosyl- and glucosylgalactosyl-hydroxylysine. Furthermore, key glycosylated hydroxylysine residues, α1/2-87, are involved in covalent intermolecular cross-linking. Although cross-linking is crucial for the stability and mineralization of collagen, the biological function of glycosylation in cross-linking is not well understood. In this study, we quantitatively characterized glycosylation of non-cross-linked and cross-linked peptides by biochemical and nanoscale liquid chromatography-high resolution tandem mass spectrometric analyses. The results showed that glycosylation of non-cross-linked hydroxylysine is different from that involved in cross-linking. Among the cross-linked species involving α1/2-87, divalent cross-links were glycosylated with both mono- and disaccharides, whereas the mature, trivalent cross-links were primarily monoglycosylated. Markedly diminished diglycosylation in trivalent cross-links at this locus was also confirmed in type II collagen. The data, together with our recent report (Sricholpech, M., Perdivara, I., Yokoyama, M., Nagaoka, H., Terajima, M., Tomer, K. B., and Yamauchi, M. (2012) Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance. J. Biol. Chem. 287, 22998–23009), indicate that the extent and pattern of glycosylation may regulate cross-link maturation in fibrillar collagen.  相似文献   

15.
一成骨不全家系的COL1A1基因突变检测   总被引:7,自引:0,他引:7  
成骨不全(Osteogenesisimperfecta,OI)是一种由于Ⅰ型胶原形成障碍,导致骨脆性增强为主要症状的 常染色体显性遗传性疾病。临床上主要表现为骨质脆弱、蓝巩膜、耳聋和中等程度的关节畸形等症状。成骨不全 基因分别定位于17q21.31 q22和7q22.1,其致病基因分别为COL1A1和COL1A2。对一常染色体显性遗传的 成骨不全家系进行连锁分析,在COL1A1遗传位点发现紧密连锁(LOD=9.31;θ=.00)。突变检测发现在 COL1A1基因第26内含子5′端剪接位点处存在一由GT转换为AT的致病突变,该突变引起的异常剪接是导致成 骨不全的致病原因之一。  相似文献   

16.
Missense mutations, which replace one Gly with a larger residue in the repeating sequence of the type I collagen triple helix, lead to the hereditary bone disorder osteogenesis imperfecta (OI). Previous studies suggest that these mutations may interfere with triple-helix folding. NMR was used to investigate triple-helix formation in a series of model peptides where the residue replacing Gly, as well as the local sequence environment, was varied. NMR measurement of translational diffusion coefficients allowed the identification of partially folded species. When Gly was replaced by Ala, the Ala residue was incorporated into a fully folded triple helix, whereas replacement of Gly by Ser or Arg resulted in the presence of some partially folded species, suggesting a folding barrier. Increasing the triple-helix stability of the sequence N-terminal to a Gly-to-Ser replacement allowed complete triple-helix folding, whereas with the substitution of Arg, with its large side chain, the peptide achieved full folding only after flexible residues were introduced N-terminal to the mutation site. These studies shed light on the factors important for accommodation of Gly mutations within the triple helix and may relate to the varying severity of OI.  相似文献   

17.
Collagen is an essential part of the cardiac interstitium. Collagen subtypes, their location, total amount and the architecture of the fibrillar network are of functional importance. Architecture in terms of density of the fibrillar network is assumed to be reflected by the intensity of immunohistochemical staining of collagen. The aim of this study was to evaluate a video-based microdensitometric method for quantifying density expressed as absorbance of collagen subtypes I and III stained with an indirect immunoperoxidase method in myectomy specimens of patients with hypertrophic obstructive cardiomyopathy. Various factors influencing the immunohistochemical staining product and the technical properties of the image analysis system were investigated. Linearity between collagen concentration and the absorbance of the immunohistochemical staining product was demonstrated for collagen I using a dot-blot technique. Immunohistochemical collagen staining and density measure ment were easily reproducible. The cardiac disability of the patients was assessed according to the New York Heart Association (NYHA) criteria. There was a significant increase in collagen type I density with higher NYHA class, whereas no significant association was found for total collagen area fraction. Thus, video-based microdensitometry gives further insight into the structural remodelling of myocardial collagens and reveals their significance in the process of heart failure in hypertrophic cardiomyopathy.  相似文献   

18.

Objective

Osteogenesis imperfecta (OI) is a rare inherited skeletal disease, characterized by bone fragility and low bone density. The mutations in this disorder have been widely reported to be on various exonal hotspots of the candidate genes, including COL1A1, COL1A2, CRTAP, LEPRE1, and FKBP10, thus creating a great demand for precise genetic tests. However, large genome sizes make the process daunting and the analyses, inefficient and expensive. Therefore, we aimed at developing a fast, accurate, efficient, and cheaper sequencing platform for OI diagnosis; and to this end, use of an advanced array-based technique was proposed.

Method

A CustomSeq Affymetrix Resequencing Array was established for high-throughput sequencing of five genes simultaneously. Genomic DNA extraction from 13 OI patients and 85 normal controls and amplification using long-range PCR (LR-PCR) were followed by DNA fragmentation and chip hybridization, according to standard Affymetrix protocols. Hybridization signals were determined using GeneChip Sequence Analysis Software (GSEQ). To examine the feasibility, the outcome from new resequencing approach was validated by conventional capillary sequencing method.

Result

Overall call rates using resequencing array was 96–98% and the agreement between microarray and capillary sequencing was 99.99%. 11 out of 13 OI patients with pathogenic mutations were successfully detected by the chip analysis without adjustment, and one mutation could also be identified using manual visual inspection.

Conclusion

A high-throughput resequencing array was developed that detects the disease-associated mutations in OI, providing a potential tool to facilitate large-scale genetic screening for OI patients. Through this method, a novel mutation was also found.  相似文献   

19.
Osteogenesis imperfecta (OI) is a heritable connective tissue disease characterized by bone fragility and increased risk of fractures. Up to now, mutations in at least 18 genes have been associated with dominant and recessive forms of OI that affect the production or post-translational processing of procollagen or alter bone homeostasis. Among those, SERPINH1 encoding heat shock protein 47 (HSP47), a chaperone exclusive for collagen folding in the ER, was identified to cause a severe form of OI in dachshunds (L326P) as well as in humans (one single case with a L78P mutation). To elucidate the disease mechanism underlying OI in the dog model, we applied a range of biochemical assays to mutant and control skin fibroblasts as well as on bone samples. These experiments revealed that type I collagen synthesized by mutant cells had decreased electrophoretic mobility. Procollagen was retained intracellularly with concomitant dilation of ER cisternae and activation of the ER stress response markers GRP78 and phospho-eIF2α, thus suggesting a defect in procollagen processing. In line with the migration shift detected on SDS-PAGE of cell culture collagen, extracts of bone collagen from the OI dog showed a similar mobility shift, and on tandem mass spectrometry, the chains were post-translationally overmodified. The bone collagen had a higher content of pyridinoline than control dog bone. We conclude that the SERPINH1 mutation in this naturally occurring model of OI impairs how HSP47 acts as a chaperone in the ER. This results in abnormal post-translational modification and cross-linking of the bone collagen.  相似文献   

20.
目的 胶原诱导性关节炎模型(collagen induced arthritis,CIA)是研究类风湿性关节炎发病机制和治疗药物筛选的理想模型,也是目前国际上公认的关节炎模型.但是,目前鲜见Ⅱ型胶原诱导CIA模型的系统免疫学变化的报道.因此,本研究采用DBA/1小鼠诱导了CIA模型,并对其免疫学改变进行了系统研究.方法 将牛Ⅱ型胶原与完全弗氏佐剂混和并充分乳化,于DBA/1小鼠尾根部皮内注射进行初次免疫,20 d后同样方法进行再次免疫.应用千分尺测量CIA模型小鼠的左右两侧足掌厚度,并进行关节炎评分.酶联免疫吸附试验测定小鼠血清Ⅱ型胶原特异性抗体,Luminex技术和αLISA技术测定血清及培养上清中的细胞因子水平.结果CIA小鼠于造模后23 d开始,陆续出现前肢、后肢的红肿、功能障碍,发病率高达100%,且随着时间的延长其关节肿胀程度呈进行性加重,关节炎评分增高.CIA小鼠脾脏指数较正常组明显升高,且Ⅱ型胶原刺激的特异性T细胞增殖明显增强.细胞因子检测结果表明,脾细胞培养上清中IFN-γ和1L-4含量及IFN-γ/IL-4比值明显升高,TNF-α和IL-1β水平亦显著升高.此外,CIA小鼠血清中存在高水平的Ⅱ型胶原特异性抗体.结论 Ⅱ型胶原诱导CIA模型发病率高,免疫学改变以Th1细胞因子升高为主,兼有细胞免疫功能及体液免疫功能损伤.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号