首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Phenotypes that appear to be conserved could be maintained not only by strong purifying selection on the underlying genetic systems, but also by stabilizing selection acting via compensatory mutations with balanced effects. Such coevolution has been invoked to explain experimental results, but has rarely been the focus of study. Conserved expression driven by the unc-47 promoters of Caenorhabditis elegans and C. briggsae persists despite divergence within a cis-regulatory element and between this element and the trans-regulatory environment. Compensatory changes in cis and trans are revealed when these promoters are used to drive expression in the other species. Functional changes in the C. briggsae promoter, which has experienced accelerated sequence evolution, did not lead to alteration of gene expression in its endogenous environment. Coevolution among promoter elements suggests that complex epistatic interactions within cis-regulatory elements may facilitate their divergence. Our results offer a detailed picture of regulatory evolution in which subtle, lineage-specific, and compensatory modifications of interacting cis and trans regulators together maintain conserved gene expression patterns.  相似文献   

3.
4.
5.
Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements.  相似文献   

6.
7.
8.
9.
Biological differences between cell types and developmental processes are characterised by differences in gene expression profiles. Gene-distal enhancers are key components of the regulatory networks that specify the tissue-specific expression patterns driving embryonic development and cell fate decisions, and variations in their sequences are a major contributor to genetic disease and disease susceptibility. Despite advances in the methods for discovery of putative cis-regulatory sequences, characterisation of their spatio-temporal enhancer activities in a mammalian model system remains a major bottle-neck. We employed a strategy that combines gnathostome sequence conservation with transgenic mouse and zebrafish reporter assays to survey the genomic locus of the developmental control gene PAX6 for the presence of novel cis-regulatory elements. Sequence comparison between human and the cartilaginous elephant shark (Callorhinchus milii) revealed several ancient gnathostome conserved non-coding elements (agCNEs) dispersed widely throughout the PAX6 locus, extending the range of the known PAX6 cis-regulatory landscape to contain the full upstream PAX6-RCN1 intergenic region. Our data indicates that ancient conserved regulatory sequences can be tested effectively in transgenic zebrafish even when not conserved in zebrafish themselves. The strategy also allows efficient dissection of compound regulatory regions previously assessed in transgenic mice. Remarkable overlap in expression patterns driven by sets of agCNEs indicates that PAX6 resides in a landscape of multiple tissue-specific regulatory archipelagos.  相似文献   

10.
A gene regulatory network subcircuit comprising the otx, wnt8, and blimp1 genes accounts for a moving torus of gene expression that sweeps concentrically across the vegetal domain of the sea urchin embryo. Here we confirm by mutation the inputs into the blimp1cis-regulatory module predicted by network analysis. Its essential design feature is that it includes both activation and autorepression sites. The wnt8 gene is functionally linked into the subcircuit in that cells receiving this ligand generate a β-catenin/Tcf input required for blimp1 expression, while the wnt8 gene in turn requires a Blimp1 input. Their torus-like spatial expression patterns and gene regulatory analysis indicate that the genes even-skipped and hox11/13b are also entrained by this subcircuit. We verify the cis-regulatory inputs of even-skipped predicted by network analysis. These include activation by β-catenin/Tcf and Blimp1, repression within the torus by Hox11/13b, and repression outside the torus by Tcf in the absence of Wnt8 signal input. Thus even-skipped and hox11/13b, along with blimp1 and wnt8, are members of a cohort of torus genes with similar regulatory inputs and similar, though slightly out-of-phase, expression patterns, which reflect differences in cis-regulatory design.  相似文献   

11.
12.
13.
14.
15.
16.
Hox genes are key regulators of anterior-posterior axis patterning and have a major role in hindbrain development. The zebrafish Hox4 paralogs have strong overlapping activities in hindbrain rhombomeres 7 and 8, in the spinal cord and in the pharyngeal arches. With the aim to predict enhancers that act on the hoxa4a, hoxb4a, hoxc4a and hoxd4a genes, we used sequence conservation around the Hox4 genes to analyze all fish:human conserved non-coding sequences by reporter assays in stable zebrafish transgenesis. Thirty-four elements were functionally tested in GFP reporter gene constructs and more than 100 F1 lines were analyzed to establish a correlation between sequence conservation and cis-regulatory function, constituting a catalog of Hox4 CNEs. Sixteen tissue-specific enhancers could be identified. Multiple alignments of the CNEs revealed paralogous cis-regulatory sequences, however, the CNE sequence similarities were found not to correlate with tissue specificity. To identify ancestral enhancers that direct Hox4 gene activity, genome sequence alignments of mammals, teleosts, horn shark and the cephalochordate amphioxus, which is the most basal extant chordate possessing a single prototypical Hox cluster, were performed. Three elements were identified and two of them exhibited regulatory activity in transgenic zebrafish, however revealing no specificity. Our data show that the approach to identify cis-regulatory sequences by genome sequence alignments and subsequent testing in zebrafish transgenesis can be used to define enhancers within the Hox clusters and that these have significantly diverged in their function during evolution.  相似文献   

17.
18.
Cyclin D genes regulate the cell cycle, growth and differentiation in response to intercellular signaling. While the promoters of vertebrate cyclin D genes have been analyzed, the cis-regulatory sequences across an entire cyclin D locus have not. Doing so would increase understanding of how cyclin D genes respond to the regulatory states established by developmental gene regulatory networks, linking cell cycle and growth control to the ontogenetic program. Therefore, we conducted a cis-regulatory analysis on the cyclin D gene, SpcycD, of the sea urchin, Strongylocentrotus purpuratus, during embryogenesis, identifying upstream and intronic sequences, located within six defined regions bearing one or more cis-regulatory modules each.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号