首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Innate immune responses elicited upon virus exposure are crucial for the effective eradication of viruses, the onset of adaptive immune responses and for establishing proper immune memory. Respiratory syncytial virus (RSV) is responsible for a high disease burden in neonates and immune compromised individuals, causing severe lower respiratory tract infections. During primary infections exuberant innate immune responses may contribute to disease severity. Furthermore, immune memory is often insufficient to protect during RSV re-exposure, which results in frequent symptomatic reinfections. Therefore, identifying the cell types and pattern recognition receptors (PRRs) involved in RSV-specific innate immune responses is necessary to understand incomplete immunity against RSV. We investigated the innate cellular response triggered upon infection of epithelial cells and peripheral blood mononuclear cells. We show that CD14+ myeloid cells and epithelial cells are the major source of IL-8 and inflammatory cytokines, IL-6 and TNF-α, when exposed to live RSV Three routes of RSV-induced IFN-α production can be distinguished that depend on the cross-talk of different cell types and the presence or absence of virus specific antibodies, whereby pDC are the ultimate source of IFN-α. RSV-specific antibodies facilitate direct TLR7 access into endosomal compartments, while in the absence of antibodies, infection of monocytes or epithelial cells is necessary to provide an early source of type I interferons, required to engage the IFN-α,β receptor (IFNAR)-mediated pathway of IFN-α production by pDC. However, at high pDC density infection with RSV causes IFN-α production without the need for a second party cell. Our study shows that cellular context and immune status are factors affecting innate immune responses to RSV. These issues should therefore be addressed during the process of vaccine development and other interventions for RSV disease.  相似文献   

2.
RNA-specific adenosine deaminase (ADAR)-mediated adenosine-to-inosine (A-to-I) editing is a critical arm of the antiviral response. However, mechanistic insights into how A-to-I RNA editing affects viral infection are lacking. We posited that inosine incorporation into RNA facilitates sensing of nonself RNA by innate immune sensors and accordingly investigated the impact of inosine-modified RNA on Toll-like receptor 7 and 8 (TLR7/8) sensing. Inosine incorporation into synthetic single-stranded RNA (ssRNA) potentiated tumor necrosis factor alpha (TNF-α) or alpha interferon (IFN-α) production in human peripheral blood mononuclear cells (PBMCs) in a sequence-dependent manner, indicative of TLR7/8 recruitment. The effect of inosine incorporation on TLR7/8 sensing was restricted to immunostimulatory ssRNAs and was not seen with inosine-containing short double-stranded RNAs or with a deoxy-inosine-modified ssRNA. Inosine-mediated increase of self-secondary structure of an ssRNA resulted in potentiated IFN-α production in human PBMCs through TLR7 recruitment, as established through the use of a TLR7 antagonist and Tlr7-deficient cells. There was a correlation between hyperediting of influenza A viral ssRNA and its ability to stimulate TNF-α, independent of 5′-triphosphate residues, and involving Adar-1. Furthermore, A-to-I editing of viral ssRNA directly enhanced mouse Tlr7 sensing, when present in proportions reproducing biologically relevant levels of RNA editing. Thus, we demonstrate for the first time that inosine incorporation into immunostimulatory ssRNA can potentiate TLR7/8 activation. Our results suggest a novel function of A-to-I RNA editing, which is to facilitate TLR7/8 sensing of phagocytosed viral RNA.  相似文献   

3.
Recent studies indicate that toll-like receptors (TLRs) are expressed on T cells and that these receptors directly or indirectly activate the adaptive immune system. We have shown previously that acute alcohol/ethanol (EtOH) intoxication combined with burn injury suppresses mesenteric lymph node (MLN) T-cell interleukin-2 (IL-2) and interferon γ (IFN-γ) production. We examined whether direct stimulation of T cells with TLR2, 4, 5 and 7 agonists modulates CD3-mediated T-cell IL-2/IFN-γ release following EtOH and burn injury. Male mice were gavaged with EtOH (2.9 gm/kg) 4 h prior to receiving an ~12.5% total body surface area sham or full-thickness burn injury. Animals were killed on d 1 after injury and T cells were purified from MLN and spleens. T cells were cultured with plate-bound anti-CD3 in the presence or absence of various TLR ligands. Although TLR2, 4 and 5 agonists potentiate anti-CD3–dependent IFN-γ by T cells, the TLR2 agonist alone induced IFN-γ production independent of CD3 stimulation. Furthermore, T cells were treated with inhibitors of myeloid differentiation primary response protein 88 (MyD88), TIR domain-containing adaptor protein (TIRAP), p38 and/or extracellular signal-regulated kinase (ERK) to determine the mechanism by which TLR2 mediates IL-2/IFN-γ production. IL-2 was not influenced by TLR agonists. MyD88 and TIRAP inhibitory peptides dose-dependently diminished the ability of T cells to release IFN-γ. p38 and ERK inhibitors also abolished TLR2-mediated T-cell IFN-γ. Together, our findings suggest that TLR2 directly modulates T-cell IFN-γ production following EtOH and burn injury, independent of antigen-presenting cells. Furthermore, we demonstrated that MyD88/TIRAP-dependent p38/ERK activation is critical to TLR2-mediated T-cell IFN-γ release following EtOH and burn injury.  相似文献   

4.
Mother-to-child transmission (MTCT) of HIV-1 has been significantly reduced with the use of antiretroviral therapies, resulting in an increased number of HIV-exposed uninfected infants. The consequences of HIV infection on the innate immune system of both mother-newborn are not well understood. In this study, we analyzed peripheral blood and umbilical cord blood (CB) collected from HIV-1-infected and uninfected pregnant women. We measured TNF-α, IL-10 and IFN-α secretion after the stimulation of the cells with agonists of both extracellular Toll-like receptors (TLRs) (TLR2, TLR4 and TLR5) and intracellular TLRs (TLR7, TLR7/8 and TLR9). Moreover, as an indicator of the innate immune response, we evaluated the responsiveness of myeloid dendritic cells (mDCs) and plasmacytoid DCs (pDCs) to TLRs that are associated with the antiviral response. Our results showed that peripheral blood mononuclear cells (PBMCs) from HIV-1-infected mothers and CB were defective in TNF-α production after activation by TLR2, TLR5, TLR3 and TLR7. However, the TNF-α response was preserved after TLR7/8 (CL097) stimulation, mainly in the neonatal cells. Furthermore, only CL097 activation was able to induce IL-10 and IFN-α secretion in both maternal and CB cells in the infected group. An increase in IFN-α secretion was observed in CL097-treated CB from HIV-infected mothers compared with control mothers. The effectiveness of CL097 stimulation was confirmed by observation of similar mRNA levels of interferon regulatory factor-7 (IRF-7), IFN-α and TNF-α in PBMCs of both groups. The function of both mDCs and pDCs was markedly compromised in the HIV-infected group, and although TLR7/TLR8 activation overcame the impairment in TNF-α secretion by mDCs, such stimulation was unable to reverse the dysfunctional type I IFN response by pDCs in the HIV-infected samples. Our findings highlight the dysfunction of innate immunity in HIV-infected mother-newborn pairs. The activation of the TLR7/8 pathway could function as an adjuvant to improve maternal-neonatal innate immunity.  相似文献   

5.
6.
7.
Components of bacteria have been shown to induce innate antiviral immunity via Toll-like receptors (TLRs). We have recently shown that FimH, the adhesin portion of type 1 fimbria, can induce the innate immune system via TLR4. Here we report that FimH induces potent in vitro and in vivo innate antimicrobial responses. FimH induced an innate antiviral state in murine macrophage and primary MEFs which was correlated with IFN-β production. Moreover, FimH induced the innate antiviral responses in cells from wild type, but not from MyD88−/−, Trif−/−, IFN−α/βR−/− or IRF3−/− mice. Vaginal delivery of FimH, but not LPS, completely protected wild type, but not MyD88−/−, IFN-α/βR−/−, IRF3−/− or TLR4−/− mice from subsequent genital HSV-2 challenge. The FimH-induced innate antiviral immunity correlated with the production of IFN-β, but not IFN-α or IFN-γ. To examine whether FimH plays a role in innate immune induction in the context of a natural infection, the innate immune responses to wild type uropathogenic E. coli (UPEC) and a FimH null mutant were examined in the urinary tract of C57Bl/6 (B6) mice and TLR4-deficient mice. While UPEC expressing FimH induced a robust polymorphonuclear response in B6, but not TLR4−/− mice, mutant bacteria lacking FimH did not. In addition, the presence of TLR4 was essential for innate control of and protection against UPEC. Our results demonstrate that FimH is a potent inducer of innate antimicrobial responses and signals differently, from that of LPS, via TLR4 at mucosal surfaces. Our studies suggest that FimH can potentially be used as an innate microbicide against mucosal pathogens.  相似文献   

8.
Type I Interferon (IFN) is one of the first lines of defense against viral infection. Plasmacytoid dendritic cells (pDCs) are professional IFN-α-producing cells that play an important role in the antiviral immune response. Previous studies have reported that IFN-α production is impaired in chronic hepatitis B (CHB) patients. However, the mechanisms underlying the impairment in IFN-α production are not fully understood. Here, we report that plasma-derived hepatitis B surface antigen (HBsAg) and HBsAg expressed in CHO cells can significantly inhibit toll like receptor (TLR) 9-mediated Interferon-α (IFN-α) production in peripheral blood mononuclear cells (PBMCs) from healthy donors. Further analysis indicated that monocytes participate in the inhibitory effect of HBsAg on pDCs through the secretion of TNF-α and IL-10. Furthermore, TLR9 expression on pDCs was down-regulated by TNF-α, IL-10 and HBsAg treatment. This down-regulation may partially explain the inhibition of IFN-α production in pDCs. In conclusion, we determined that HBsAg inhibited the production of IFN-α by pDCs through the induction of monocytes that secreted TNF-α and IL-10 and through the down-regulation of TLR9 expression on pDCs. These data may aid in the development of effective antiviral treatments and lead to the immune control of the viral infections.  相似文献   

9.
Although B cells play important roles in the humoral immune response and the regulation of adaptive immunity, B cell subpopulations with unique phenotypes, particularly those with non-classical immune functions, should be further investigated. By challenging mice with Listeria monocytogenes, Escherichia coli, vesicular stomatitis virus and Toll-like receptor ligands, we identified an inducible CD11ahiFcγRIIIhi B cell subpopulation that is significantly expanded and produces high levels of IFN-γ during the early stage of the immune response. This subpopulation of B cells can promote macrophage activation via generating IFN-γ, thereby facilitating the innate immune response against intracellular bacterial infection. As this new subpopulation is of B cell origin and exhibits the phenotypic characteristics of B cells, we designated these cells as IFN-γ-producing innate B cells. Dendritic cells were essential for the inducible generation of these innate B cells from the follicular B cells via CD40L-CD40 ligation. Increased Bruton''s tyrosine kinase activation was found to be responsible for the increased activation of non-canonical NF-κB pathway in these innate B cells after CD40 ligation, with the consequent induction of additional IFN-γ production. The identification of this new population of innate B cells may contribute to a better understanding of B cell functions in anti-infection immune responses and immune regulation.  相似文献   

10.

Background

The type-1 cytokine pathway plays a pivotal role in immunity against intracellular bacterial pathogens such as Salmonellae and Mycobacteria. Bacterial stimulation of pattern recognition receptors on monocytes, macrophages and dendritic cells initiates this pathway, and results in the production of cytokines that activate lymphocytes to produce interferon (IFN)-γ. Interleukin (IL)-12 and IL-23 are thought to be the key cytokines required for initiating a type-1 cytokine immune response to Mycobacteria and Salmonellae. The relative contribution of IL-23 and IL-12 to this process is uncertain.

Methodology/Principal Findings

We show that various TLR agonists induce the production of IL-23 but not IL-12 in freshly isolated human monocytes and cultured human macrophages. In addition, type 1 pro-inflammatory macrophages (Mϕ1) differentiated in the presence of GM-CSF and infected with live Salmonella produce IL-23, IL-1β and IL-18, but not IL-12. Supernatants of Salmonella-infected Mϕ1 contained more IL-18 and IL-1β as compared with supernatants of Mϕ1 stimulated with isolated TLR agonists, and induced IFN-γ production in human CD56+ cells in an IL-23 and IL-1β-dependent but IL-12-independent manner. In addition, IL-23 together with IL-18 or IL-1β led to the production of GM-CSF in CD56+ cells. Both IFN-γ and GM-CSF enhanced IL-23 production by monocytes in response to TLR agonists, as well as induced IL-12 production.

Conclusions/Significance

The findings implicate a positive feedback loop in which IL-23 can enhance its release via induction of IFN-γ and GM-CSF. The IL-23 induced cytokines allow for the subsequent production of IL-12 and amplify the IFN-γ production in the type-1 cytokine pathway.  相似文献   

11.
Toxoplasma gondii is an orally acquired pathogen that induces strong IFN-γ based immunity conferring protection but that can also be the cause of immunopathology. The response in mice is driven in part by well-characterized MyD88-dependent signaling pathways. Here we focus on induction of less well understood immune responses that do not involve this Toll-like receptor (TLR)/IL-1 family receptor adaptor molecule, in particular as they occur in the intestinal mucosa. Using eYFP-IL-12p40 reporter mice on an MyD88-/- background, we identified dendritic cells, macrophages, and neutrophils as cellular sources of MyD88-independent IL-12 after peroral T. gondii infection. Infection-induced IL-12 was lower in the absence of MyD88, but was still clearly above noninfected levels. Overall, this carried through to the IFN-γ response, which while generally decreased was still remarkably robust in the absence of MyD88. In the latter mice, IL-12 was strictly required to induce type I immunity. Type 1 and type 3 innate lymphoid cells (ILC), CD4+ T cells, and CD8+ T cells each contributed to the IFN-γ pool. We report that ILC3 were expanded in infected MyD88-/- mice relative to their MyD88+/+ counterparts, suggesting a compensatory response triggered by loss of MyD88. Furthermore, bacterial flagellin and Toxoplasma specific CD4+ T cell populations in the lamina propria expanded in response to infection in both WT and KO mice. Finally, we show that My88-independent IL-12 and T cell mediated IFN-γ production require the presence of the intestinal microbiota. Our results identify MyD88-independent intestinal immune pathways induced by T. gondii including myeloid cell derived IL-12 production, downstream type I immunity and IFN-γ production by ILC1, ILC3, and T lymphocytes. Collectively, our data reveal an underlying network of immune responses that do not involve signaling through MyD88.  相似文献   

12.
Infants have long been known to have higher infectious diseases morbidity and mortality and suboptimal vaccination responses compared to older children and adults. A variety of differences in innate and adaptive immune responses have been described between these two groups. We compared Toll-like receptor (TLR)-induced production of pro-interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α between 2-month-old infants and adults. TLR 7/8-induced production of pro-IL-1β and IL-6 in monocytes was lower in 2-month-old infants compared to adults. There was no difference in TLR 7/8-induced production of TNF-α. Lower TLR-induced production of pro-IL-1β and IL-6 in innate immune cells during early infancy likely contributes to suboptimal vaccine responses and infectious diseases susceptibility.  相似文献   

13.
14.
The innate immune response is supposed to play an essential role in the control of amebic liver abscess (ALA), a severe form of invasive amoebiasis due to infection with the protozoan parasite Entamoeba histolytica. In a mouse model for the disease, we previously demonstrated that Jα18-/- mice, lacking invariant natural killer T (iNKT) cells, suffer from more severe abscess development. Here we show that the specific activation of iNKT cells using α-galactosylceramide (α-GalCer) induces a significant reduction in the sizes of ALA lesions, whereas CD1d−/− mice develop more severe abscesses. We identified a lipopeptidophosphoglycan from E. histolytica membranes (EhLPPG) as a possible natural NKT cell ligand and show that the purified phosphoinositol (PI) moiety of this molecule induces protective IFN-γ but not IL-4 production in NKT cells. The main component of EhLPPG responsible for NKT cell activation is a diacylated PI, (1-O-[(28∶0)-lyso-glycero-3-phosphatidyl-]2-O-(C16:0)-Ins). IFN-γ production by NKT cells requires the presence of CD1d and simultaneously TLR receptor signalling through MyD88 and secretion of IL-12. Similar to α-GalCer application, EhLPPG treatment significantly reduces the severity of ALA in ameba-infected mice. Our results suggest that EhLPPG is an amebic molecule that is important for the limitation of ALA development and may explain why the majority of E. histolytica-infected individuals do not develop amebic liver abscess.  相似文献   

15.
16.
Infection of SCID mice with a recombinant murine coronavirus (mouse hepatitis virus [MHV]) expressing the T-cell chemoattractant CXC chemokine ligand 10 (CXCL10) resulted in increased survival and reduced viral burden within the brain and liver compared to those of mice infected with an isogenic control virus (MHV), supporting an important role for CXCL10 in innate immune responses following viral infection. Enhanced protection in MHV-CXCL10-infected mice correlated with increased gamma interferon (IFN-γ) production by infiltrating natural killer (NK) cells within the brain and reduced liver pathology. To explore the underlying mechanisms associated with protection from disease in MHV-CXCL10-infected mice, the functional contributions of the NK cell-activating receptor NKG2D in host defense were examined. The administration of an NKG2D-blocking antibody to MHV-CXCL10-infected mice did not reduce survival, dampen IFN-γ production in the brain, or affect liver pathology. However, NKG2D neutralization increased viral titers within the liver, suggesting a protective role for NKG2D signaling in this organ. These data indicate that (i) CXCL10 enhances innate immune responses, resulting in protection from MHV-induced neurological and liver disease; (ii) elevated NK cell IFN-γ expression in the brain of MHV-CXCL10-infected mice occurs independently of NKG2D; and (iii) NKG2D signaling promotes antiviral activity within the livers of MHV-infected mice that is not dependent on IFN-γ and tumor necrosis factor alpha secretion.  相似文献   

17.
During interaction with APCs, invariant (i) NKT cells are thought to be indirectly activated by TLR4-dependently activated APCs. However, whether TLR4 directly activates iNKT cells is unknown. Therefore, the expression and function of TLR4 in iNKT cells were investigated. Flow cytometric and confocal microscopic analysis revealed TLR4 expression on the surface and in the endosome of iNKT cells. Upon LPS stimulation, iNKT cells enhanced IFN-γ production, but reduced IL-4 production, in the presence of TCR signals, depending on TLR4, MyD88, TRIF, and the endosome. However, enhanced TLR4-mediated IFN-γ production by iNKT cells did not affect IL-12 production or CD1d expression by DCs. Adoptive transfer of WT, but not TLR4-deficient, iNKT cells promoted antibody-induced arthritis in CD1d−/− mice, suggesting that endogenous TLR4 ligands modulate iNKT cell function in arthritis. Furthermore, LPS-pretreated WT, but not TLR4-deficient, iNKT cells suppressed pulmonary fibrosis, but worsened hypersensitivity pneumonitis more than untreated WT iNKT cells, indicating that exogenous TLR4 ligands regulate iNKT cell functions in pulmonary diseases. Taken together, we propose a novel direct activation pathway of iNKT cells in the presence of TCR signals via endogenous or exogenous ligand-mediated engagement of TLR4 in iNKT cells, which regulates immune diseases by altering IFN-γ and IL-4 production.  相似文献   

18.
Immunity to the murine cytomegalovirus (MCMV) is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Vα14 invariant natural killer T cell response to MCMV has not been examined. We found that Vα14i NK T cells become activated and produce significant levels of IFN-γ, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Vα14i NK T cells into MCMV-infected CD1d−/− mice demonstrate that CD1d is dispensable for Vα14i NK T cell activation. In contrast, both IFN-α/β and IL-12 are required for optimal activation. Vα14i NK T cell–derived IFN-γ is partially dependent on IFN-α/β but highly dependent on IL-12. Vα14i NK T cells contribute to the immune response to MCMV and amplify NK cell–derived IFN-γ. Importantly, mortality is increased in CD1d−/− mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Vα14i NK T cells that act as effector T cells during bacterial infection, but have NK cell–like behavior during the innate immune response to MCMV infection.  相似文献   

19.
Host defense against the intracellular protozoan parasite Trypanosoma cruzi depends on Toll-like receptor (TLR)-dependent innate immune responses. Recent studies also suggest the presence of TLR-independent responses to several microorganisms, such as viruses, bacteria, and fungi. However, the TLR-independent responses to protozoa remain unclear. Here, we demonstrate a novel TLR-independent innate response pathway to T. cruzi. Myd88 −/− Trif −/− mice lacking TLR signaling showed normal T. cruzi-induced Th1 responses and maturation of dendritic cells (DCs), despite high sensitivity to the infection. IFN-γ was normally induced in T. cruzi-infected Myd88 −/− Trif −/− innate immune cells, and further was responsible for the TLR-independent Th1 responses and DC maturation after T. cruzi infection. T. cruzi infection induced elevation of the intracellular Ca2+ level. Furthermore, T. cruzi-induced IFN-γ expression was blocked by inhibition of Ca2+ signaling. NFATc1, which plays a pivotal role in Ca2+ signaling in lymphocytes, was activated in T. cruzi-infected Myd88−/−Trif−/− innate immune cells. T. cruzi-infected Nfatc1 −/− fetal liver DCs were impaired in IFN-γ production and DC maturation. These results demonstrate that NFATc1 mediates TLR-independent innate immune responses in T. cruzi infection.  相似文献   

20.
Modification of the innate immune cell environment has recently been recognized as a viable treatment strategy for reducing autoimmune disease pathology. MIS416 is a microparticulate immune response modifier that targets myeloid cells, activating cytosolic receptors NOD2 and TLR9, and has completed a phase 1b/2a trial for the treatment of secondary progressive multiple sclerosis. Using a mouse model of multiple sclerosis, we are investigating the pathways by which activation of TLR9 and NOD2 may modify the innate immune environment and the subsequent T cell-mediated autoimmune responses. We have found that MIS416 has profound effects on the Th subset balance by depressing antigen-specific Th1, Th17, and Th2 development. These effects coincided with an expansion of specific myeloid subpopulations and increased levels of MIS416-stimulated IFN-γ by splenocytes. Additionally, systemic IFN-γ serum levels were enhanced and correlated strongly with disease reduction, and the protective effect of MIS416 was abrogated in IFN-γ-deficient animals. Finally, treatment of secondary progressive MS patients with MIS416 similarly elevated the levels of IFN-γ and IFN-γ–associated proteins in the serum. Together, these studies demonstrate that administration of MIS416, which targets innate cells, reshapes autoimmune T cell responses and leads to a significant reduction in CNS inflammation and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号