共查询到20条相似文献,搜索用时 0 毫秒
1.
Peirong Li Shujiang Zhang Shifan Zhang Fei Li Hui Zhang Feng Cheng Jian Wu Xiaowu Wang Rifei Sun 《BMC genomics》2015,16(1)
Background
Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa.Results
We identified 67 carotenoid biosynthetic genes in B. rapa, which were orthologs of the 47 carotenoid genes in A. thaliana. A high level of synteny was observed for carotenoid biosynthetic genes between A. thaliana and B. rapa. Out of 47 carotenoid biosynthetic genes in A. thaliana, 46 were successfully mapped to the 10 B. rapa chromosomes, and most of the genes retained more than one copy in B. rapa. The gene expansion was caused by the whole-genome triplication (WGT) event experienced by Brassica species. An expression analysis of the carotenoid biosynthetic genes suggested that their expression levels differed in root, stem, leaf, flower, callus, and silique tissues. Additionally, the paralogs of each carotenoid biosynthetic gene, which were generated from the WGT in B. rapa, showed significantly different expression levels among tissues, suggesting differentiated functions for these multi-copy genes in the carotenoid pathway.Conclusions
This first systematic study of carotenoid biosynthetic genes in B. rapa provides insights into the carotenoid metabolic mechanisms of Brassica crops. In addition, a better understanding of carotenoid biosynthetic genes in B. rapa will contribute to the development of conventional and transgenic B. rapa cultivars with enriched carotenoid levels in the future.Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1655-5) contains supplementary material, which is available to authorized users. 相似文献2.
Jungeun Kim Jeongyeo Lee Jae-Pil Choi Inkyu Park Kyungbong Yang Min Keun Kim Young Han Lee Ill-Sup Nou Dae-Soo Kim Sung Ran Min Sang Un Park HyeRan Kim 《BMC genomics》2014,15(1)
Background
The Brassicaceae family is an exemplary model for studying plant polyploidy. The Brassicaceae knowledge-base includes the well-annotated Arabidopsis thaliana reference sequence; well-established evidence for three rounds of whole genome duplication (WGD); and the conservation of genomic structure, with 24 conserved genomic blocks (GBs). The recently released Brassica rapa draft genome provides an ideal opportunity to update our knowledge of the conserved genomic structures in Brassica, and to study evolutionary innovations of the mesohexaploid plant, B. rapa.Results
Three chronological B. rapa genomes (recent, young, and old) were reconstructed with sequence divergences, revealing a trace of recursive WGD events. A total of 636 fast evolving genes were unevenly distributed throughout the recent and young genomes. The representative Gene Ontology (GO) terms for these genes were ‘stress response’ and ‘development’ both through a change in protein modification or signaling, rather than by enhancing signal recognition. In retention patterns analysis, 98% of B. rapa genes were retained as collinear gene pairs; 77% of those were singly-retained in recent or young genomes resulting from death of the ancestral copies, while others were multi-retained as long retention genes. GO enrichments indicated that single retention genes mainly function in the interpretation of genetic information, whereas, multi-retention genes were biased toward signal response, especially regarding development and defense. In the recent genome, 13,302, 5,790, and 20 gene pairs were multi-retained following Brassica whole genome triplication (WGT) events with 2, 3, and 4 homoeologous copies, respectively. Enriched GO-slim terms from B. rapa homomoelogues imply that a major effect of the B. rapa WGT may have been to acquire environmental adaptability or to change the course of development. These homoeologues seem to more frequently undergo subfunctionalization with spatial expression patterns compared with other possible events including nonfunctionalization and neofunctionalization.Conclusion
We refined Brassicaceae GB information using the latest genomic resources, and distinguished three chronologically ordered B. rapa genomes. B. rapa genes were categorized into fast evolving, single- and multi-retention genes, and long retention genes by their substitution rates and retention patterns. Representative functions of the categorized genes were elucidated, providing better understanding of B. rapa evolution and the Brassica genus.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-606) contains supplementary material, which is available to authorized users. 相似文献3.
Jong-In Park Nasar Uddin Ahmed Hee-Jeong Jung Senthil Kumar Thamil Arasan Mi-Young Chung Yong-Gu Cho Masao Watanabe Ill-Sup Nou 《BMC genomics》2014,15(1)
Background
LIM (Lin-11, Isl-1 and Mec-3 domains) genes have been reported to trigger the formation of actin bundles, a major higher-order cytoskeletal assembly, in higher plants; however, the stress resistance related functions of these genes are still not well known. In this study, we collected 22 LIM genes designated as Brassica rapa LIM (BrLIM) from the Brassica database, analyzed the sequences, compared them with LIM genes of other plants and analyzed their expression after applying biotic and abiotic stresses in Chinese cabbage.Results
Upon sequence analysis these genes were confirmed as LIM genes and found to have a high degree of homology with LIM genes of other species. These genes showed distinct clusters when compared to other recognized LIM proteins upon phylogenetic analysis. Additionally, organ specific expression of these genes was observed in Chinese cabbage plants, with BrPLIM2a, b, c, BrDAR1, BrPLIM2e, f and g only being expressed in flower buds. Furthermore, the expression of these genes (except for BrDAR1 and BrPLIM2e) was high in the early flowering stages. The remaining genes were expressed in almost all organs tested. All BrDAR genes showed higher expression in flower buds compared to other organs. These organ specific expressions were clearly correlated with the phylogenetic grouping. In addition, BrWLIM2c and BrDAR4 responded to Fusarium oxysporum f. sp. conglutinans infection, while commonly two BrDARs and eight BrLIMs responded to cold, ABA and pH (pH5, pH7 and pH9) stress treatments in Chinese cabbage plants.Conclusion
Taken together, the results of this study indicate that BrLIM and BrDAR genes may be involved in resistance against biotic and abiotic stresses in Brassica.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-641) contains supplementary material, which is available to authorized users. 相似文献4.
Within organisms, groups of traits with different functions are frequently modular, such that variation among modules is independent and variation within modules is tightly integrated, or correlated. Here, we investigated patterns of trait integration and modularity in Brassica rapa in response to three simulated seasonal temperature/photoperiod conditions. The goals of this research were to use trait correlations to understand patterns of trait integration and modularity within and among floral, vegetative and phenological traits of B. rapa in each of three treatments, to examine the QTL architecture underlying patterns of trait integration and modularity, and to quantify how variation in temperature and photoperiod affects the correlation structure and QTL architecture of traits. All floral organs of B. rapa were strongly correlated, and contrary to expectations, floral and vegetative traits were also correlated. Extensive QTL co-localization suggests that covariation of these traits is likely due to pleiotropy, although physically linked loci that independently affect individual traits cannot be ruled out. Across treatments, the structure of genotypic and QTL correlations was generally conserved. Any observed variation in genetic architecture arose from genotype × environment interactions (GEIs) and attendant QTL × E in response to temperature but not photoperiod. 相似文献
5.
Kenichiro Hiroi Mikako Sone Satomi Sakazono Masaaki Osaka Hiromi Masuko-Suzuki Tomoki Matsuda Go Suzuki Keita Suwabe Masao Watanabe 《Annals of botany》2013,112(1):115-122
Background and Aims
Pollination is an important process in the life cycle of plants and is the first step in bringing together the male and female gametophytes for plant reproduction. While pollination has been studied for many years, accurate knowledge of the morphological aspects of this process is still far from complete. This study therefore focuses on a morphological characterization of pollination, using time-series image analysis of self- and cross-pollinations in Brassica rapa.Methods
Time-lapse imaging of pollen behaviour during self- and cross-pollinations was recorded for 90 min, at 1 min intervals, using a stereoscopic microscope. Using time-series digital images of pollination, characteristic features of pollen behaviours during self- and cross-pollinations were studied.Key Results
Pollen exhibited various behaviours in both self- and cross-pollinations, and these were classified into six representative patterns: germination, expansion, contraction, sudden contraction, pulsation and no change. It is noteworthy that in ‘contraction’ pollen grains shrunk within a short period of 30–50 min, and in ‘pulsation’ repeated expansion and contraction occurred with an interval of 10 min, suggesting that a dehydration system is operating in pollination. All of the six patterns were observed on an individual stigma with both self- and cross-pollinations, and the difference between self- and cross-pollinations was in the ratios of the different behaviours. With regard to water transport to and from pollen grains, this occurred in multiple steps, before, during and after hydration. Thus, pollination is regulated by a combination of multiple components of hydration, rehydration and dehydration systems.Conclusions
Regulated hydration of pollen is a key process for both pollination and self-incompatibility, and this is achieved by a balanced complex of hydration, dehydration and nutrient supply to pollen grains from stigmatic papilla cells. 相似文献6.
7.
Nirala Ramchiary Van Dan Nguyen Xiaonan Li Chang Pyo Hong Vignesh Dhandapani Su Ryun Choi Ge Yu Zhong Yun Piao Yong Pyo Lim 《DNA research》2011,18(5):305-320
Genic microsatellite markers, also known as functional markers, are preferred over anonymous markers as they reveal the variation in transcribed genes among individuals. In this study, we developed a total of 707 expressed sequence tag-derived simple sequence repeat markers (EST-SSRs) and used for development of a high-density integrated map using four individual mapping populations of B. rapa. This map contains a total of 1426 markers, consisting of 306 EST-SSRs, 153 intron polymorphic markers, 395 bacterial artificial chromosome-derived SSRs (BAC-SSRs), and 572 public SSRs and other markers covering a total distance of 1245.9 cM of the B. rapa genome. Analysis of allelic diversity in 24 B. rapa germplasm using 234 mapped EST-SSR markers showed amplification of 2 alleles by majority of EST-SSRs, although amplification of alleles ranging from 2 to 8 was found. Transferability analysis of 167 EST-SSRs in 35 species belonging to cultivated and wild brassica relatives showed 42.51% (Sysimprium leteum) to 100% (B. carinata, B. juncea, and B. napus) amplification. Our newly developed EST-SSRs and high-density linkage map based on highly transferable genic markers would facilitate the molecular mapping of quantitative trait loci and the positional cloning of specific genes, in addition to marker-assisted selection and comparative genomic studies of B. rapa with other related species. 相似文献
8.
Variation of glucosinolates in vegetable crops of Brassica rapa 总被引:1,自引:0,他引:1
Glucosinolate levels in leaves were determined in a collection of 113 varieties of turnip greens (Brassica rapa L.) from northwestern Spain grown at two sites. Sensorial attributes were also assessed by a consumer panel. The objectives were to determine the diversity among varieties in total glucosinolate content and glucosinolate profile and to evaluate their sensory attributes in relation to glucosinolate content for breeding purposes. Sixteen glucosinolates were identified, being the aliphatic glucosinolates, gluconapin and glucobrassicanapin the most abundant. Other aliphatic glucosinolates, such as progoitrin, glucoalyssin, and gluconapoleiferin were relatively abundant in varieties with a different glucosinolate profile. Indolic and aromatic glucosinolate concentrations were low and showed few differences among varieties. Differences in total glucosinolate content, glucosinolate profile and bitterness were found among varieties, with a total glucosinolate content ranging from 11.8 to 74.0micromolg(-1) dw at one site and from 7.5 to 56.9micromolg(-1) dw at the other site. Sensory analysis comparing bitterness with variation in glucosinolate, gluconapin and glucobrassicanapin concentrations suggested that these compounds and their breakdown products are not the only determinants of the characteristic flavour of this vegetable. Other phytochemicals are probably involved on the characteristic bitter flavour. The varieties MBG-BRS0132, MBG-BRS0082, MBG-BRS0173, and MBG-BRS0184 could be good candidates for future breeding programs since they had high total glucosinolate content and good agronomic performance. The presence of glucoraphanin in some varieties should be studied more extensively, because this aliphatic glucosinolate is the precursor of sulforaphane, a potent anti-cancer isothiocyanate. 相似文献
9.
Glucosinolate biosynthetic genes in Brassica rapa 总被引:7,自引:0,他引:7
Glucosinolates (GS) are a group of amino acid-derived secondary metabolites found throughout the Cruciferae family. Glucosinolates and their degradation products play important roles in pathogen and insect interactions, as well as in human health. In order to elucidate the glucosinolate biosynthetic pathway in Brassica rapa, we conducted comparative genomic analyses of Arabidopsis thaliana and B. rapa on a genome-wide level. We identified 102 putative genes in B. rapa as the orthologs of 52 GS genes in A. thaliana. All but one gene was successfully mapped on 10 chromosomes. Most GS genes exist in more than one copy in B. rapa. A high co-linearity in the glucosinolate biosynthetic pathway between A. thaliana and B. rapa was also established. The homologous GS genes in B. rapa and A. thaliana share 59-91% nucleotide sequence identity and 93% of the GS genes exhibit synteny between B. rapa and A. thaliana. Moreover, the structure and arrangement of the B. rapa GS (BrGS) genes correspond with the known evolutionary divergence of B. rapa, and may help explain the profiles and accumulation of GS in B. rapa. 相似文献
10.
11.
Hiroshi Abe Yoshihiro Narusaka Issei Sasaki Katsunori Hatakeyama Sadasu Shin-I Mari Narusaka Kaoru Fukami-Kobayashi Satoru Matsumoto Masatomo Kobayashi 《DNA research》2011,18(4):277-289
Arabidopsis belongs to the Brassicaceae family and plays an important role as a model plant for which researchers have developed fine-tuned genome resources. Genome sequencing projects have been initiated for other members of the Brassicaceae family. Among these projects, research on Chinese cabbage (Brassica rapa subsp. pekinensis) started early because of strong interest in this species. Here, we report the development of a library of Chinese cabbage full-length cDNA clones, the RIKEN BRC B. rapa full-length cDNA (BBRAF) resource, to accelerate research on Brassica species. We sequenced 10 000 BBRAF clones and confirmed 5476 independent clones. Most of these cDNAs showed high homology to Arabidopsis genes, but we also obtained more than 200 cDNA clones that lacked any sequence homology to Arabidopsis genes. We also successfully identified several possible candidate marker genes for plant defence responses from our analysis of the expression of the Brassica counterparts of Arabidopsis marker genes in response to salicylic acid and jasmonic acid. We compared gene expression of these markers in several Chinese cabbage cultivars. Our BBRAF cDNA resource will be publicly available from the RIKEN Bioresource Center and will help researchers to transfer Arabidopsis-related knowledge to Brassica crops. 相似文献
12.
13.
K. Song M. K. Slocum T. C. Osborn 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1995,90(1):1-10
Construction of a detailed RFLP linkage map of B. rapa (syn. campestris) made it possible, for the first time, to study individual genes controlling quantitative traits in this species. Ninety-five F2 individuals from a cross of Chinese cabbage cv Michihili by Spring broccoli were analyzed for segregation at 220 RFLP loci and for variation in leaf, stem, and flowering characteristics. The number, location, and magnitude of genes underlying 28 traits were determined by using an interval mapping method. Zero to five putative quantitative trait loci (QTL) were detected for each of the traits examined. There were unequal gene effects on the expression of many traits, and the inheritance patterns of traits ranged from those controlled by a single major gene plus minor genes to those controlled by polygenes with small and similar effects. The effect of marker locus density on detection of QTL was analyzed, and the results showed that the number of QTL detected did not change when the number of marker loci used for QTL mapping was decreased from 220 to 126; however, a further reduction from 126 to 56 caused more than 15% loss of the total QTL detected. The detection of putative minor QTL by removing the masking effects of major QTL was explored. 相似文献
14.
Jingyin Yu Sadia Tehrim Fengqi Zhang Chaobo Tong Junyan Huang Xiaohui Cheng Caihua Dong Yanqiu Zhou Rui Qin Wei Hua Shengyi Liu 《BMC genomics》2014,15(1)
Background
Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana.Results
Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species.Conclusion
This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome triplication analysis in B. oleracea, B. rapa and A. thaliana genomes, our study provides insight into the evolutionary history of NBS-encoding genes after divergence of A. thaliana and the Brassica lineage. These results together with expression pattern analysis of NBS-encoding orthologous genes provide useful resource for functional characterization of these genes and genetic improvement of relevant crops.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-3) contains supplementary material, which is available to authorized users. 相似文献15.
Pirjo Tanhuanpää Alan Schulman 《Molecular breeding : new strategies in plant improvement》2002,10(1-2):51-62
F2 progeny segregating for linolenic acid content were used to identify genes and develop markers for linolenic acid in spring turnip rape (Brassica rapa ssp. oleifera). A candidate gene approach applying the rapeseed fad3 gene and bulked segregant analysis with RAPD markers was used. A total of 27 markers were distributed in three linkage groups which each exhibited a QTL for linolenic acid. Jointly the three QTLs accounted for 73.5% of the variation in linolenic acid level in this population. The fad3 gene was mapped near one QTL controlling 23.5% of the variation. Allele-specific markers were developed for fad3 and can be used for marker-assisted selection in future spring turnip rape breeding programmes. 相似文献
16.
17.
The corolla of Brassica rapa has an UV-absorbing zone in its center, known as the nectar guide for attracting pollinating insects. The pigment which plays the role of the nectar guide was isolated from the petals and identified to be isorhamnetin 3,7-O-di-beta-D-glucopyranoside on the basis of MS and NMR spectroscopic data. The D-, L-configurations of the sugar moieties were determined by the fluorometric HPLC method. In plants raised in open field, there was a 13-fold higher content of the compound in the basal parts of the petals compared with the apical parts. This difference in flavonoid content is presumed to contribute to the visual attractiveness of B. rapa flowers to insect pollinators. 相似文献
18.
Distribution of calcium (Ca) and magnesium (Mg) in the leaves of Brassica rapa under varying exogenous Ca and Mg supply 总被引:1,自引:0,他引:1
Rios JJ Lochlainn SO Devonshire J Graham NS Hammond JP King GJ White PJ Kurup S Broadley MR 《Annals of botany》2012,109(6):1081-1089
Background and Aims
Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution.Methods
Brassica rapa ssp. trilocularis ‘R-o-18’ was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM).Key Results
Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply.Conclusions
The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding. 相似文献19.
Robert R. Nakamura Thomas Mitchell-Olds Robin S. Manasse Denise Lello 《Oecologia》1995,101(3):324-328
Herbivory and disease can shape the evolution of plant populations, but their joint effects are rarely investigated. Families of plants of Brassica rapa (Brassicaceae) were grown from seeds collected in two naturalized populations in an experimental garden. We examined leaf infection by the fungus Alternaria, seed predation by a gall midge (Cecidomyiidae) and plant life-history traits. Plants from one population had heavier seeds, were more likely to flower, had less fungal infection, had more seed predation and were more fecund. Fungal infection score and seed predation rate increased with plant size, but large plants still had the greatest number of undamaged fruits. Spatial heterogeneity in the experimental garden was significant; seed predation rate and fecundity varied among blocks. An apparent tradeoff existed between susceptibility to disease and seed predation: plants with the highest fungal infection score had the lowest seed predation rate. Alternaria infection varied between populations, but the disease had no effect on fecundity. Seed predation did reduce fecundity. Damaged fruits had 31.4% fewer intact seeds. However, evidence for additive genetic variation in resistance to seed predation was weak. Therefore, neither disease nor seed predation was likely to be a strong agent of genetically based fecundity selection. 相似文献
20.
Although boron (B) is a micronutrient essential for the growth of vascular plants, it reduces growth and seed yield when present in excessive amounts. A hydroponic assay of nineteen Brassica rapa genotypes resulted in the identification of two tolerant genotypes, WWY Sarson and Local at a range of boron concentrations (15–165 μM). The most tolerant and sensitive genotypes were assessed for shoot boron concentrations in a soil assay with 4, 29 and 54 mg B kg−1 soil. The soil assay confirmed the results of the hydroponic screening. Shoot boron uptake was at least three times lower and shoot boron concentrations about 10 times lower in the tolerant than sensitive genotypes, indicating that boron tolerance involved boron exclusion from the shoot. 相似文献