首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipid phase of the thylakoid membrane is mainly composed of the galactolipids mono‐ and digalactosyl diacylglycerol (MGDG and DGDG, respectively). It has been known since the late 1960s that MGDG can be acylated with a third fatty acid to the galactose head group (acyl‐MGDG) in plant leaf homogenates. In certain brassicaceous plants like Arabidopsis thaliana, the acyl‐MGDG frequently incorporates oxidized fatty acids in the form of the jasmonic acid precursor 12‐oxo‐phytodienoic acid (OPDA). In the present study we further investigated the distribution of acylated and OPDA‐containing galactolipids in the plant kingdom. While acyl‐MGDG was found to be ubiquitous in green tissue of plants ranging from non‐vascular plants to angiosperms, OPDA‐containing galactolipids were only present in plants from a few genera. A candidate protein responsible for the acyl transfer was identified in Avena sativa (oat) leaf tissue using biochemical fractionation and proteomics. Knockout of the orthologous gene in A. thaliana resulted in an almost total elimination of the ability to form both non‐oxidized and OPDA‐containing acyl‐MGDG. In addition, heterologous expression of the A. thaliana gene in E. coli demonstrated that the protein catalyzed acylation of MGDG. We thus demonstrate that a phylogenetically conserved enzyme is responsible for the accumulation of acyl‐MGDG in A. thaliana. The activity of this enzyme in vivo is strongly enhanced by freezing damage and the hypersensitive response.  相似文献   

2.
The functional characterization of wax biosynthetic enzymes in transgenic plants has opened the possibility of producing tailored wax esters (WEs) in the seeds of a suitable host crop. In this study, in addition to systematically evaluating a panel of WE biosynthetic activities, we have also modulated the acyl‐CoA substrate pool, through the co‐expression of acyl‐ACP thioesterases, to direct the accumulation of medium‐chain fatty acids. Using this combinatorial approach, we determined the additive contribution of both the varied acyl‐CoA pool and biosynthetic enzyme substrate specificity to the accumulation of non‐native WEs in the seeds of transgenic Camelina plants. A total of fourteen constructs were prepared containing selected FAR and WS genes in combination with an acyl‐ACP thioesterase. All enzyme combinations led to the successful production of wax esters, of differing compositions. The impact of acyl‐CoA thioesterase expression on wax ester accumulation varied depending on the substrate specificity of the WS. Hence, co‐expression of acyl‐ACP thioesterases with Marinobacter hydrocarbonoclasticus WS and Marinobacter aquaeolei FAR resulted in the production of WEs with reduced chain lengths, whereas the co‐expression of the same acyl‐ACP thioesterases in combination with Mus musculus WS and M. aquaeolei FAR had little impact on the overall final wax composition. This was despite substantial remodelling of the acyl‐CoA pool, suggesting that these substrates were not efficiently incorporated into WEs. These results indicate that modification of the substrate pool requires careful selection of the WS and FAR activities for the successful high accumulation of these novel wax ester species in Camelina seeds.  相似文献   

3.
PCR–SSCP and DNA sequencing methods were employed to screen the genetic variation of vascular endothelial growth factor (VEGF) gene in 675 individuals belonging to three Chinese indigenous cattle breeds including Qinchuan (QC), Jiaxian Red (JX) and Nanyang (NY) breed. Three new single nucleotide polymorphisms (SNPs) (g.6765T > C ss130456744, g.6860A > G ss130456745, g.6893T > C ss130456746) were found. One SNP (g.6765T > C) was detected in intron II of VEGF gene in all three breeds and the other two SNPs (g.6860A > G, g.6893T > C) were in exon III of VEGF gene only in NY breed. Among them, two synonymous mutations of exon III were identified: CCA (Pro) > CCG (Pro) at position 65th amino acid (aa) and TGT (Cys) > TGC (Cys) at position 76th aa of VEGF(190aa) in NY breed. Our study revealed that NY breed exhibited the most abundant genetic diversity in VEGF gene within the three cattle breeds. Furthermore, JX cattle breed was more similar to QC breed than to NY breed. Our genetic data in the present study supported the hypothesis that the distribution pattern of Chinese indigenous cattle breeds was closely related to the geographical and climatic background again.  相似文献   

4.
Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the most abundant lipids in nature, mainly as important components of plant leaves and chloroplast membranes. Pancreatic lipase-related protein 2 (PLRP2) was previously found to express galactolipase activity, and it is assumed to be the main enzyme involved in the digestion of these common vegetable lipids in the gastrointestinal tract. Most of the previous in vitro studies were however performed with medium chain synthetic galactolipids as substrates. It was shown here that recombinant guinea pig (Cavia porcellus) as well as human PLRP2 hydrolyzed at high rates natural DGDG and MGDG extracted from spinach leaves. Their specific activities were estimated by combining the pH-stat technique, thin layer chromatography coupled to scanning densitometry and gas chromatography. The optimum assay conditions for hydrolysis of these natural long chain galactolipids were investigated and the optimum bile salt to substrate ratio was found to be different from that established with synthetic medium chains MGDG and DGDG. Nevertheless the length of acyl chains and the nature of the galactosyl polar head of the galactolipid did not have major effects on the specific activities of PLRP2, which were found to be very high on both medium chain [1786 ± 100 to 5420 ± 85 U/mg] and long chain [1756 ± 208 to 4167 ± 167 U/mg] galactolipids. Fatty acid composition analysis of natural MGDG, DGDG and their lipolysis products revealed that PLRP2 only hydrolyzed one ester bond at the sn-1 position of galactolipids. PLRP2 might be used to produce lipid and free fatty acid fractions enriched in either 16:3 n − 3 or 18:3 n − 3 fatty acids, both found at high levels in galactolipids.  相似文献   

5.
6.
An aminopeptidase that has peptide bond formation activity was identified in the cell-free extract of carpophore of Pleurotus eryngii. The enzyme, redesignated as eryngase, was purified for homogeneity and characterized. Eryngase had a molecular mass of approximately 79 kDa. It showed somewhat high stability with respect to temperature and pH; it was inhibited by iodoacetate. Among hydrolytic activities toward aminoacyl-p-nitroanilides (aminoacyl-pNAs), eryngase mainly hydrolyzed hydrophobic l-aminoacyl-pNAs and exhibited little activity toward d-Ala-pNA and d-Leu-pNA. In terms of peptide bond formation activity, eryngase used various aminoacyl derivatives as acyl donors and acceptors. The products were all dipeptidyl derivatives. Investigation of time dependence on peptide synthesis revealed that some peptides that are not recognized as substrates for hydrolytic activity of eryngase could become good targets for synthesis. Furthermore, eryngase has produced opioid dipeptides––l-kyotorphin (l-Tyr-l-Arg) and d-kyotorphin (l-Tyr-d-Arg)––using l-Tyr-NH2 and d- and l-Arg-methyl ester respectively as an acyl donor and acceptor. Yield evaluation of kyotorphin synthesis indicated that the conversion ratio of substrate to kyotorphin was moderate: the value was estimated as greater than 20%.  相似文献   

7.
A cDNA encoding -amino acid oxidase (DAO;EC 1.4.3.3) has been isolated from a BALB/c mouse kidney cDNA library by hybridization with the cDNA for the porcine enzyme. Analysis of the nucleotide (nt) sequence of the clone revealed that it has a 1647-nt sequence with a 5′-terminal untranslated region of 68 nt that encodes 345 amino acids (aa), and a 3′-terminal untranslated region of 544 nt that contains the polyadenylation signal sequence ATTAAA. The deduced aa sequence showed 77 and 78% aa identity with the porcine and human enzymes, respectively. Two catalytically important aa residues, Tyr228 and His307, of the porcine enzyme, were both conserved in these three species. RNA blot hybridization analysis indicated that a DAO mRNA, of 2 kb, exists in mouse kidney and brain, but not liver. Synthesis of a functional mouse enzyme in Escherichia coli was achieved through the use of a vector constructed to insert the coding sequence of the mouse DAO cDNA downstream from the tac promoter of plasmid pKK223-3, which was designed so as to contain the lac repressor gene inducible by isopropyl-β- -thiogalactopyranoside. Immunoblot analysis confirmed the synthesis and induction of the mouse DAO protein, and the molecular size of the recombinant mouse DAO was found to be identical to that of the mouse kidney enzyme. Moreover, the maximum activity of the mouse recombinant DAO was estimated to be comparable with that of the porcine DAO synthesized in E. coli cells.  相似文献   

8.
The ThPOD1 gene encodes a peroxidase and was isolated from a Tamarix hispida NaCl-stress root cDNA library. We found that ThPOD1 expression could be induced by abiotic stresses such as cold, salt, drought and exogenous abscisic acid. These findings suggested that ThPOD1 might be involved in the plant response to environmental stresses and ABA treatment. To elucidate the function of this gene, recombinant plasmids expressing full-length ThPOD1 as well as ThPOD2 (aa 41-337), and ThPOD3 (aa 73-337) truncated polypeptides were constructed. SDS–PAGE and Western blot analyses of the fusion proteins revealed that the molecular weights of ThPOD1, ThPOD2 and ThPOD3 were ~57, ~50 and ~47 kDa, respectively. Stress assays of E. coli treated with the recombinant plasmids indicated that ThPOD3 could improve resistance to drought stress. This finding could potentially be used to improve plant tolerance to drought stress via gene transfer.  相似文献   

9.
J. L. Li 《Animal genetics》2013,44(6):693-702
Extracellular superoxide dismutase (SOD3) is a major antioxidant enzyme that protects organs from damage by reactive oxygen species (ROS). In this study, the SOD3 gene was identified and characterized from the freshwater mussel Hyriopsis cumingii (Hc‐SOD3). The cDNA sequence consists of 763 bp, encoding a protein of 208 amino acids. The amino acid sequence possesses two CuZnSOD signature sequences, and amino acids required for binding of Cu (His‐93, ‐95, ‐110 and ‐169) and Zn (His‐110, ‐118, ‐129 and Asp‐132) were conserved in Hc‐SOD3. The Hc‐SOD3 genomic sequence was 9165 bp in length, containing four exons and three introns. Eighteen single nucleotide polymorphisms were detected in the Hc‐SOD3 gene from resistant stock (RS) and susceptible stock (SS) of H. cumingii to Aeromonas hydrophila. The genotype and allele distribution were examined in resistant and susceptible stocks. Among them, a C/G substitution at the g.7994C>G locus and G/C substitution at the g.8087G>C locus were significantly associated with resistance/susceptibility of H. cumingii to A. hydrophila, both in genotype (= 0.017, = 0.004 respectively) and allele frequency (= 0.021, = 0.006 respectively). Linkage disequilibrium analysis revealed that g.7994C>G, g.8001A>G, g.8035G>A, g.8087G>C and g.8191T>A were in linkage disequilibrium. The results suggest that the two polymorphic loci, g.7994C>G and g.8087G>C, could be potential genetic markers for future molecular selection of strains that are resistant to diseases.  相似文献   

10.
11.
Summary An irreversible resolution of ketoprofen prodrug was developed by lipase-catalysed hydrolysis using corresponding vinyl ester as activated substrate in organic medium. The product obtained, (S)-ketoprofen vinyl ester would be used as a potential prodrug and a significant monomer for polymeric drug. Lipozyme? immobilized from Mucor miehei showed the highest selectivity and activity after enzyme screening. The effect of solvent, water amount in the reaction medium and reaction temperature on the activity and enantioselectivity of Lipozyme? was studied. Polymerizable, optically active ketoprofen prodrug could be obtained with excellent enantioselectivity (ee >99%, E ~ 400) in a mixture of dioxane/water (97.5/2.5, v/v) at 25 °C.  相似文献   

12.
A gene (agrP) encoding a β-agarase from Pseudoalteromonas sp. AG4 was cloned and expressed in Escherichia coli. The agrP primary structure consists of an 870-bp open reading frame (ORF) encoding 290 amino acids (aa). The predicted molecular mass and isoelectric point were determined at 33 kDa and 5.9, respectively. The signal peptide was predicted to be 21 aa. The deduced aa sequence showed 98.6% identity to β-agarase from Pseudoalteromonas atlantica. The recombinant protein was purified as a fusion protein and biochemically characterized. The purified β-agarase (AgaP) had specific activity of 204.4 and 207.5 units/mg towards agar and agarose, respectively. The enzyme showed maximum activity at 55°C and pH 5.5. It was stable at pH 4.5 to 8.0 and below 55°C for 1 h. The enzyme produced neoagarohexaose and neoagarotetraose from agar and in addition to that neoagarobiose from the agarose. The neoagarooligosaccharides were biologically active. Hence, AgaP is a useful enzyme source for use by cosmetic and pharmaceutical industries.  相似文献   

13.
The full-length cDNA and genomic DNA of a cytoplasmic copper, zinc superoxide dismutase (CuZn-sod) were cloned from the hepatopancreas of small abalone Haliotis diversicolor supertexta by RT-PCR, RACE and TAIL PCR. The full-length cytoplasmic CuZn-sod cDNA (designated sasod) comprises 984 bp. Its ORF encodes a polypeptide of 154 amino acids with a predicted molecular mass of 15.7 kDa and theoretical isoelectric point of 6.30. The deduced amino acid (designated saSOD) shares a common consensus pattern with the SODs of vertebrate and invertebrate animals. The full-length sasod genomic DNA comprises 5,574 bp, containing five exons and four introns. The splice donor and acceptor sequence of the four introns is 5′GT-AG3′. Real time quantitative PCR analysis revealed that sasod expression level in hepatopancreas of small abalone was no significant difference at 2, 6, 48 and 192 h post TBT exposure (P > 0.05). However, the sasod expression level at 12 and 24 h post TBT exposure was decreased significantly (P < 0.05).  相似文献   

14.
Aryl acylamidase (EC 3.5.1.13, AAA) acts on the amide bond between aryl and acyl groups. Whole cells of Escherichia coli overexpressing a novel bacterial AAA synthesized p-acetaminophenol (p-AAP) from p-aminophenol (p-AP, aryl compound) and acetate (acyl donor). Optimum conditions were pH 5.5 and 35°C with 100 mM p-AP and 600 mM sodium acetate in 100 mM sodium phosphate buffer including 1% (v/v) Triton X-100 for 60 h. 13.1 g p-AAP l−1 was produced with a conversion yield of 87%.  相似文献   

15.
We cloned the cDNA and genomic DNA encoding for Izumo1 of cashmere goat (Capra hircus) and sheep (Ovis aries). Analysis of 4.6 kb Izumo1 genomic sequences in sheep and goat revealed a canonical open reading frame (ORF) of 963 bp spliced by eight exons. Sheep and goat Izumo1 genes share >99% identity at both DNA and protein levels and are also highly homologous to the orthologues in cattle, mouse, rat and human. Extensive cloning and analysis of Izumo1 cDNA revealed three (del 69, del 182 and del 217) and two (del 69 and ins 30) alternative splicing isoforms in goat and sheep, respectively. All of the isoforms are derived from splicing at typical GT-AG sites leading to partial or complete truncation of the immunoglobulin (Ig)-like domain. Bioinformatics analysis showed that caprine and ovine Izumo1 proteins share similar structure with their murine orthologue. There are a signal peptide at the N-terminus (1–22 aa), a transmembrane domain at the C-terminus (302–319 aa), and an extracellular Ig-like region in the middle (161–252 aa) with a putative N-linked glycosylation site (N205-N-S). Alignment of Izumo1 protein sequences among 15 mammalian species displayed several highly conserved regions, including LDC and YRC motifs with cysteine residues for potential disulfide bridge formation, CPNKCG motif upstream of the Ig-like domain, GLTDYSFYRVW motif upstream of the putative N-linked glycosylation site, and a number of scattered cysteine residues. These distinctive features are very informative to pinpoint the important gene motifs and functions. The C-terminal regions, however, are more variable across species. Izumo1 cDNA sequences of goat, sheep, and cow were found to be largely homologous, and the molecular phylogenetic analysis is consistent with their morphological taxonomy. This implies the Izumo1 gene evolves from the same ancestor, and the mechanism of sperm–egg fusion in mammals may be under the same principle in which Izumo1 plays an important role.  相似文献   

16.
α-Chymotrypsin-catalyzed peptide synthesis was carried out between an N-protected D-amino acid ester and an L-amino acid amide (acyl donor, 10 mM; acyl acceptor, 50 mM; enzyme, 2 mg ml−1; pH 8). By using a highly reactive carbamoylmethyl (Cam) ester as acyl donor, the D-amino acid was incorporated into the N-terminus of the resulting dipeptide amide. N-Protected dipeptide amides bearing D-amino acids such as D-Phe, D-Leu and D-Ala at their N-terminus were synthesized in high yields (up to 80%) in 1–3 h.  相似文献   

17.
Six different extracellular laccase isoforms were identified in submerged cultures of the commercially important edible mushroom, Coprinus comatus. Although laccase activity (~55 IU/L) was readily detectable in unsupplemented control cultures containing 1.6 μM Cu2+ after 22-day incubation, mean enzyme levels (~150–185 IU/L) were 2.7–3.4-fold higher in cultures supplemented with 0.5–3.0 mM Cu2+. Laccase production was also stimulated by Mn supplementation over the range 0.05–0.8 mM Mn2+, and the peak value of ~225 IU/L recorded after 22 days in cultures containing 0.8 mM added Mn2+ was 4.5-fold higher compared with unsupplemented controls. Of 12 aromatic compounds tested for their effect on laccase isozyme production by C. comatus, highest laccase levels (~188 IU/L), equivalent to a 4.4-fold increase compared with unsupplemented controls (~43 IU/L), were recorded after 22 days in cultures supplemented with 3.0 mM caffeic acid. Other aromatic compounds tested all stimulated laccase production, with peak enzyme levels 1.3–3.3-fold higher compared with unsupplemented controls. Extracellular laccase levels in cultures supplemented with optimal concentrations of Mn2+ and caffeic acid together were 38% and 15% lower, respectively, compared with cultures containing the separate supplements. Lac1 was the most abundant laccase isoform produced under all the conditions tested, but marked differences were observed in the production patterns of Lac2–Lac6.  相似文献   

18.
Growth hormone-releasing hormone receptor (GHRHR) plays a critical role in growth hormone (GH) synthesis, release and regulation of pituitary somatotroph expansion in vertebrates. The objective of this study was to investigate variations in goat GHRHR gene and their associations with growth traits in 668 dairy goats. The results showed four novel single nucleotide polymorphisms (SNPs): NC_007302:g.5203C>T, 7307C>G, 9583G>A and 9668A>C. In detail, the novel SNP C>T in the 5203rd nucleotide identified a missense mutation: CCC (Pro)>TCC (Phe) at position 116aa of the goat GHRHR (423aa). Besides, 9583G>A and 9668A>C polymorphism were in complete linkage disequilibrium. The genetic diversity analysis revealed that the Guanzhong dairy goat possessed intermediate genetic diversity in P3 and P7 loci, and the Xinong Sannen dairy goat belonged to poor genetic diversity in P4 locus. Significant associations between the genotypes of P3 locus and body length, body height and chest circumference was observed in Guanzhong goat (P < 0.05). However, in Xinong saanen population, significant statistical difference was only found in body height and body length (P < 0.05). In P4 and P7 loci, no significant associations were detected between any variant sites and body length, body height and chest circumference, as well as for the milk traits (P > 0.05). These results strongly suggested that the goat GHRHR gene is a candidate gene that influences growth traits in dairy goat.  相似文献   

19.
Tannase (tannin acyl hydrolase, EC 3.1.1.20) hydrolyses the ester and depside bonds of gallotannins and gallic acid esters and is an important industrial enzyme. In the present study, transgenic Arxula adeninivorans strains were optimised for tannase production. Various plasmids carrying one or two expression modules for constitutive expression of tannase were constructed. Transformant strains that overexpress the ATAN1 gene from the strong A. adeninivorans TEF1 promoter produce levels of up to 1,642 U L−1 when grown in glucose medium in shake flasks. The effect of fed-batch fermentation on tannase productivity was then investigated in detail. Under these conditions, a transgenic strain containing one ATAN1 expression module produced 51,900 U of tannase activity per litre after 142 h of fermentation at a dry cell weight of 162 g L−1. The highest yield obtained from a transgenic strain with two ATAN1 expression modules was 31,300 U after 232 h at a dry cell weight of 104 g L−1. Interestingly, the maximum achieved yield coefficients [Y(P/X)] for the two strains were essentially identical.  相似文献   

20.
Thirty-one ester hydrolases were cloned from Escherichia coli K-12 and an efficient screening strategy was applied to screen and characterize them, emphasizing on their enantioselectivity. We are the first to investigate the enantioselectivity of these enzymes, although their activity had been reported by other researchers. The enzyme XL3 from gene b0349, XL10 from gene b0494, XL15 from gene b3412, XL27 from gene b2154 and XL31 from gene b3825 exhibited high activity towards p-nitrophenyl esters with short chain. The enzyme XL15 from gene b3412 was demonstrated for the first time to show high enantioselectivity to (R)-1-phenylethyl acetate both in hydrolysis and esterification with enantioselectivity value (E) > 100 at the conversion of 31.2 and 36.8%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号