首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sun X  Whittaker GR 《Journal of virology》2003,77(23):12543-12551
Enveloped viruses are highly dependent on their lipid envelopes for entry into and infection of host cells. Here, we have examined the role of cholesterol in the virus envelope, using methyl-beta-cyclodextrin depletion. Pretreatment of virions with methyl-beta-cyclodextrin efficiently depleted envelope cholesterol from influenza virus and significantly reduced virus infectivity in a dose-dependent manner. A nonenveloped virus, simian virus 40, was not affected by methyl-beta-cyclodextrin treatment. In the case of influenza virus, infectivity could be partially rescued by the addition of exogenous cholesterol. Influenza virus morphology, binding, and internalization were not affected by methyl-beta-cyclodextrin depletion, whereas envelope cholesterol depletion markedly affected influenza virus fusion, as measured by a specific reduction in the infectivity of viruses induced to fuse at the cell surface and by fluorescence-dequenching assays. These data suggest that envelope cholesterol is a critical factor in the fusion process of influenza virus.  相似文献   

2.
Mori K  Haruyama T  Nagata K 《PloS one》2011,6(11):e28178
The infection of viruses to a neighboring cell is considered to be beneficial in terms of evasion from host anti-virus defense systems. There are two pathways for viral infection to "right next door": one is the virus transmission through cell-cell fusion by forming syncytium without production of progeny virions, and the other is mediated by virions without virus diffusion, generally designated cell-to-cell transmission. Influenza viruses are believed to be transmitted as cell-free virus from infected cells to uninfected cells. Here, we demonstrated that influenza virus can utilize cell-to-cell transmission pathway through apical membranes, by handover of virions on the surface of an infected cell to adjacent host cells. Live cell imaging techniques showed that a recombinant influenza virus, in which the neuraminidase gene was replaced with the green fluorescence protein gene, spreads from an infected cell to adjacent cells forming infected cell clusters. This type of virus spreading requires HA activation by protease treatment. The cell-to-cell transmission was also blocked by amantadine, which inhibits the acidification of endosomes required for uncoating of influenza virus particles in endosomes, indicating that functional hemagglutinin and endosome acidification by M2 ion channel were essential for the cell-to-cell influenza virus transmission. Furthermore, in the cell-to-cell transmission of influenza virus, progeny virions could remain associated with the surface of infected cell even after budding, for the progeny virions to be passed on to adjacent uninfected cells. The evidence that cell-to-cell transmission occurs in influenza virus lead to the caution that local infection proceeds even when treated with neuraminidase inhibitors.  相似文献   

3.
Viruses exploit the host lipid metabolism machinery to achieve efficient replication. We herein characterize the lipids profile reprogramming in vitro and in vivo using liquid chromatography-mass spectrometry-based untargeted lipidomics. The lipidome of SARS-CoV-2-infected Caco-2 cells was markedly different from that of mock-infected samples, with most of the changes involving downregulation of ceramides. In COVID-19 patients'' plasma samples, a total of 54 lipids belonging to 12 lipid classes that were significantly perturbed compared to non-infected control subjects'' plasma samples were identified. Among these 12 lipid classes, ether-linked phosphatidylcholines, ether-linked phosphatidylethanolamines, phosphatidylcholines, and ceramides were the four most perturbed. Pathway analysis revealed that the glycerophospholipid, sphingolipid, and ether lipid metabolisms pathway were the most significantly perturbed host pathways. Phosphatidic acid phosphatases (PAP) were involved in all three pathways and PAP-1 deficiency significantly suppressed SARS-CoV-2 replication. siRNA knockdown of LPIN2 and LPIN3 resulted in significant reduction of SARS-CoV-2 load. In summary, these findings characterized the host lipidomic changes upon SARS-CoV-2 infection and identified PAP-1 as a potential target for intervention for COVID-19.  相似文献   

4.
Influenza A2 virions were found to contain protein kinase activity which was stimulated, like in other virion-associated kinases, with Mg++ and Nonidet-P 40 but not with cyclic AMP. The kinase phosphorylated only the NP-protein fraction of the influenza virions in the in vitro reaction. In contrast, none of the influenza virion proteins were phosphorylated significantly during the process of virus production in infected chorioallantoic membranes. The in vitro and in vivo phosphorylations of influenza viral proteins were compared with those of Sendai virus (HVJ).  相似文献   

5.
New inhibitors of influenza viruses are needed to combat the potential emergence of novel human influenza viruses. We have identified a class of small molecules that inhibit replication of influenza virus at picomolar concentrations in plaque reduction assays. The compound also inhibits replication of vesicular stomatitis virus. Time of addition and dilution experiments with influenza virus indicated that an early time point of infection was blocked and that inhibitor 136 tightly bound to virions. Using fluorescently labeled influenza virus, inhibition of viral fusion to cellular membranes by blocked lipid mixing was established as the mechanism of action for this class of inhibitors. Stabilization of the neutral pH form of hemagglutinin (HA) was ruled out by trypsin digestion studies in vitro and with conformation specific HA antibodies within cells. Direct visualization of 136 treated influenza virions at pH 7.5 or acidified to pH 5.0 showed that virions remain intact and that glycoproteins become disorganized as expected when HA undergoes a conformational change. This suggests that exposure of the fusion peptide at low pH is not inhibited but lipid mixing is inhibited, a different mechanism than previously reported fusion inhibitors. We hypothesize that this new class of inhibitors intercalate into the virus envelope altering the structure of the viral envelope required for fusion to cellular membranes.  相似文献   

6.
Viruses that are of great importance for global public health, including HIV, influenza and rotavirus, appear to exploit a remarkable organelle, the peroxisome, during intracellular replication in human cells. Peroxisomes are sites of lipid biosynthesis and catabolism, reactive oxygen metabolism, and other metabolic pathways. Viral proteins are targeted to peroxisomes (the spike protein of rotavirus) or interact with peroxisomal proteins (HIV's Nef and influenza's NS1) or use the peroxisomal membrane for RNA replication. The Nef interaction correlates strongly with the crucial Nef function of CD4 downregulation. Viral exploitation of peroxisomal lipid metabolism appears likely. Mostly, functional significance and mechanisms remain to be elucidated. Recently, peroxisomes were discovered to play a crucial role in the innate immune response by signaling the presence of intracellular virus, leading to the first rapid antiviral response. This review unearths, interprets and connects old data, in the hopes of stimulating new and promising research.  相似文献   

7.
Influenza, a predominantly upper respiratory tract infection, replicates in the respiratory epithelia and spreads by an unknown mechanism to the regional lymph nodes. Neutrophils, which accumulate during the early stages of the infection, may be involved in this process. An in vitro model system was used to examine the effect of migrating neutrophils on the permeability of the infected epithelium and on the spread of virus. Epithelial cells (MDCK) infected with influenza virus (WSN H1N1) maintained a stable transepithelial electrical resistance (a measure of epithelial permeability) for 12 hrs. However, when neutrophils migrated across the epithelium toward the virus budding on the apical surface of the epithelium (6 hrs. after infection), the transepithelial electrical resistance fell 24% (P less than 0.001). Neutrophils adhered specifically to the virus and to hemagglutinin expressed exclusively on the apical surface of the cells and phagocytized the free virions. In response to a chemotactic gradient, the infected neutrophils were able to leave the lumenal surface of the infected epithelium, and were able to migrate across the epithelium in equal numbers and at the same rate as uninfected neutrophils. Migration across infected monolayers from the lumenal to the ablumenal surface also caused a fall in resistance (21%, P less than 0.01). Electron microscopic examination of emigrating neutrophils revealed that the leukocytes transported the influenza virions within phagocytic vacuoles and on their surface to the ablumenal side of the monolayer. The results of these studies suggest that the passage of leukocytes across influenza-infected epithelia increases the permeability of the epithelium and provides a route for viral spread.  相似文献   

8.
Influenza A2 virions were found to contain protein kinase activity which was stimulated, like in other virion-associated kinases, with Mg++ and Nonidet-P 40 but not with cyclic AMP. The kinase phosphorylated only the NP-protein fraction of the influenza virions in the in vitro reaction. In contrast, none of the influenza virion proteins were phosphorylated significantly during the process of virus production in infected chorioallantoic membranes, The in vitro and in vivo phosphorylations of influenza viral proteins were compared with those of Sendai virus (HVJ).  相似文献   

9.
Influenza virus is pleiomorphic, producing both spherical (100-nm-diameter) and filamentous (100-nm by 20-μm) virions. While the spherical virions are known to enter host cells through exploitation of clathrin-mediated endocytosis, the entry pathway for filamentous virions has not been determined, though the existence of an alternative, non-clathrin-, non-caveolin-mediated entry pathway for influenza virus has been known for many years. In this study, we confirm recent results showing that influenza virus utilizes macropinocytosis as an alternate entry pathway. Furthermore, we find that filamentous influenza viruses use macropinocytosis as the primary entry mechanism. Virions enter cells as intact filaments within macropinosomes and are trafficked to the acidic late-endosomal compartment. Low pH triggers a conformational change in the M2 ion channel protein, altering membrane curvature and leading to a fragmentation of the filamentous virions. This fragmentation may enable more-efficient fusion between the viral and endosomal membranes.  相似文献   

10.
Influenza virus neuraminidase (NA) plays an essential role in release and spread of progeny virions, following the intracellular viral replication cycle. To test whether NA could also facilitate virus entry into cell, we infected cultures of human airway epithelium with human and avian influenza viruses in the presence of the NA inhibitor oseltamivir carboxylate. Twenty- to 500-fold less cells became infected in drug-treated versus nontreated cultures (P < 0.0001) 7 h after virus application, indicating that the drug suppressed the initiation of infection. These data demonstrate that viral NA plays a role early in infection, and they provide further rationale for the prophylactic use of NA inhibitors.  相似文献   

11.
Influenza A virus uses cellular protein transport systems (e.g., CRM1-mediated nuclear export and Rab11-dependent recycling endosomes) for genome trafficking from the nucleus to the plasma membrane, where new virions are assembled. However, the detailed mechanisms of these events have not been completely resolved, and additional cellular factors are probably required. Here, we investigated the role of the cellular human immunodeficiency virus (HIV) Rev-binding protein (HRB), which interacts with influenza virus nuclear export protein (NEP), during the influenza virus life cycle. By using small interfering RNAs (siRNAs) and overexpression of a dominant negative HRB protein fragment, we show that cells lacking functional HRB have significantly reduced production of influenza virus progeny and that this defect results from impaired viral ribonucleoprotein (vRNP) delivery to the plasma membrane in late-stage infection. Since HRB colocalizes with influenza vRNPs early after their delivery to the cytoplasm, it may mediate a connection between the nucleocytoplasmic transport machinery and the endosomal system, thus facilitating the transfer of vRNPs from nuclear export to cytoplasmic trafficking complexes. We also found an association between NEP and HRB in the perinuclear region, suggesting that NEP may contribute to this process. Our results identify HRB as a second endosomal factor with a crucial role in influenza virus genome trafficking, suggest cooperation between unique endosomal compartments in the late steps of the influenza virus life cycle, and provide a common link between the cytoplasmic trafficking mechanisms of influenza virus and HIV.  相似文献   

12.
Peroxisomes are single-membrane bounded organelles that in humans play a dual role in lipid metabolism, including the degradation of very long-chain fatty acids and the synthesis of ether lipids/plasmalogens. The first step in de novo ether lipid synthesis is mediated by the peroxisomal enzyme glyceronephosphate O-acyltransferase, which has a strict substrate specificity reacting only with the long-chain acyl-CoAs. The aim of this study was to determine the origin of these long-chain acyl-CoAs. To this end, we developed a sensitive method for the measurement of de novo ether phospholipid synthesis in cells and, by CRISPR-Cas9 genome editing, generated a series of HeLa cell lines with deficiencies of proteins involved in peroxisomal biogenesis, beta-oxidation, ether lipid synthesis, or metabolite transport. Our results show that the long-chain acyl-CoAs required for the first step of ether lipid synthesis can be imported from the cytosol by the peroxisomal ABCD proteins, in particular ABCD3. Furthermore, we show that these acyl-CoAs can be produced intraperoxisomally by chain shortening of CoA esters of very long-chain fatty acids via beta-oxidation. Our results demonstrate that peroxisomal beta-oxidation and ether lipid synthesis are intimately connected and that the peroxisomal ABC transporters play a crucial role in de novo ether lipid synthesis.  相似文献   

13.
Influenza virus defective interfering (DI) particles are naturally occurring noninfectious virions typically generated during in vitro serial passages in cell culture of the virus at a high multiplicity of infection. DI particles are recognized for the role they play in inhibiting viral replication and for the impact they have on the production of infectious virions. To date, influenza virus DI particles have been reported primarily as a phenomenon of cell culture and in experimentally infected embryonated chicken eggs. They have also been isolated from a respiratory infection of chickens. Using a sequencing approach, we characterize several subgenomic viral RNAs from human nasopharyngeal specimens infected with the influenza A(H1N1)pdm09 virus. The distribution of these in vivo-derived DI-like RNAs was similar to that of in vitro DIs, with the majority of the defective RNAs generated from the PB2 (segment 1) of the polymerase complex, followed by PB1 and PA. The lengths of the in vivo-derived DI-like segments also are similar to those of known in vitro DIs, and the in vivo-derived DI-like segments share internal deletions of the same segments. The presence of identical DI-like RNAs in patients linked by direct contact is compatible with transmission between them. The functional role of DI-like RNAs in natural infections remains to be established.  相似文献   

14.
BACKGROUND: Influenza virus is a worldwide health problem with significant economic consequences. To study the gene expression pattern induced by influenza virus infection, it is useful to reveal the pathogenesis of influenza virus infection; but this has not been well examined, especially in vivo study. AIMS: To assess the influence of influenza virus infection on gene expression in mice, mRNA levels in the lung and tracheal tissue 48 h after infection were investigated by cDNA array analysis. METHODS: Four-week-old outbred, specific pathogen free strain, ICR female mice were infected by intra-nasal inoculation of a virus solution under ether anesthesia. The mice were sacrificed 48 h after infection and the tracheas and lungs were removed. To determine gene expression, the membrane-based microtechnique with an Atlas cDNA expression array (mouse 1.2 array II) was performed in accordance with the manual provided. RESULTS AND CONCLUSIONS: We focused on the expression of 46 mRNAs for cell surface antigens. Of these 46 mRNAs that we examined, four (CD1d2 antigen, CD39 antigen-like 1, CD39 antigen-like 3, CD68 antigen) were up-regulated and one (CD36 antigen) was down-regulated. Although further studies are required, these data suggest that these molecules play an important role in influenza virus infection, especially the phase before specific immunity.  相似文献   

15.
流行性感冒(简称流感)是由流感病毒引起的一种急性呼吸道传染病,目前,对流感病毒预防尚无十分有效的方法,接种流感疫苗是预防流感病毒传播的主要手段之一。采用生物反应器传代细胞培养不但能快速提供高质量疫苗来应对随时爆发的流感,而且基于传代细胞培养的流感病毒与临床样本更为相似,并能避免受染鸡胚感染的危险性。因此可利用传代细胞培养来规模化生产更为高效的流感疫苗。以下主要从流感病毒及其危害,传代细胞制备流感疫苗现状以及利用生物反应器规模化培养细胞制备流感疫苗的前景和展望等方面做一综述。  相似文献   

16.
17.
Influenza virus has had a high rate of antigenic shift and drift that causes significant morbidity and mortality in humans and animals. The lack of excellent pharmacological treatment underlines the importance of the development of the novel antiviral drugs. We investigated the anti‐influenza A and B viruses of 2,4‐dichlorophenoxyacetic acid (2,4‐D), which is the synthetic analog to auxin and is used as a popular herbicide in the agricultural practices. 2,4‐D was evaluated using a cytopathic effect reduction method; assay results showed that 2,4‐D possessed strong anti‐influenza A and B viruses inhibiting the formation of a visible cytopathic effect. Influenza viral RNA expression was performed by quantitative real‐time polymerase chain reaction. 2,4‐D also inhibited virus replication in the early stage of influenza virus infection without direct interaction with virus particles. Additionally, 2,4‐D significantly inhibited various factors occur during influenza virus infection as the acidic vesicular formation and reactive oxygen species production. Moreover, 2,4‐D represented no cytotoxicity in normal kidney cell. Therefore, these findings provide an understanding of the mechanism and efficient use of 2,4‐D in pharmacological applications against influenza virus infection.  相似文献   

18.
Madin-Darby canine kidney (MDCK) cells can sustain double infection with pairs of viruses of opposite budding polarity (simian virus 5 [SV5] and vesicular stomatitis virus [VSV] or influenza and VSV), and we observed that in such cells the envelope glycoproteins of the two viruses are synthesized simultaneously and assembled into virions at their characteristic sites. Influenza and SV5 budded exclusively from the apical plasma membrane of the cells, while VSV emerged only from the basolateral surfaces. Immunoelectron microscopic examination of doubly infected MDCK cells showed that the influenza hemagglutinin (HA) and the VSV G glycoproteins traverse the same Golgi apparatus and even the same Golgi cisternae. This indicates that the pathways of the two proteins towards the plasma membrane do not diverge before passage through the Golgi apparatus and therefore that critical sorting steps must take place during or after passage of the glycoproteins through this organelle. After its passage through the Golgi, the HA accumulated primarily at the apical membrane, where influenza virion assembly occurred. A small fraction of HA did, however, appear on the lateral surface and was incorporated into the envelope of budding VSV virions. Although predominantly found on the basolateral surface, significant amounts of G protein were observed on the apical plasma membrane well before disruption of the tight junctions was detectable. Nevertheless, assembly of VSV virions was restricted to the basolateral domain and in doubly infected cells the G protein was only infrequently incorporated into the envelope of budding influenza virions. These observations indicate that the site of VSV budding is not determined exclusively by the presence of G polypeptides. Therefore, it is likely that, at least for VSV, other cellular or viral components are responsible for the selection of the appropriate budding domain.  相似文献   

19.
The effect of herpes simplex virus (HSV) and influenza virus (IV) on lipid metabolism was studied. In conditions of acute herpetic infection of rabbits we detected typical dyslipidemia, characterized by increased contents of total cholesterol, beta-cholesterol and triglycerides in the absence of trustworthy differences in concentrations of alpha-cholesterol. The use of antiherpetic preparation furavir, on the background of infection, corrected lipid spectrum of the infected animals. Blood lipid disturbances in acute influenza virus infection of mice were not detected. HSV infection of cell culture of human aorta was accompanied by increased accumulation of free lipids in cells. IV infection, in the same conditions of experiment, did not change the contents of intracellular lipids. The obtained data deepen the existing notions of herpetic and influenza infections pathogenesis and may be useful in understanding etiopathogenesis of certain somatic metabolism diseases.  相似文献   

20.
Influenza virus is known to bind sialoglycans located on the surface of the host cell. In addition, recent data suggest the involvement of other molecular targets in viral reception. Of note, a high density of terminal galactose residues is created on the surface of virions because of the influenza virus’ own neuraminidase activity. Thus, we suggested the possibility for an interaction of the influenza virus with galactose-binding proteins — galectins. In the present work we studied the influence of several galectins on the adhesion and further internalization of virus into the cell; six virus strains and three cell lines were studied. Chicken galectins CG-1A and -2 as well as human galectins HGal-1 and -8 promote virus binding in dose dependent manner, but they do not influence the internalization stage. Also, galectins are able to restore the ability of influenza virus to infect desialylated cells up to the level of native cells. When CG-1A in physiological concentrations was loaded onto viruses, the adhesion level was higher than in the case of on-cell loading. The effect of adhesion increase depends on the glycan structure of target-cell as well as of virus. The aggregated data suggest a promotional effect of galectins during the stage of influenza virus binding with the surface of target-cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号