首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Previously a variety of environmental toxicants were found to promote the epigenetic transgenerational inheritance of disease through differential DNA methylation regions (DMRs), termed epimutations, present in sperm. The transgenerational epimutations in sperm and somatic cells identified in a number of previous studies were further investigated.

Results

The epimutations from six different environmental exposures were found to be predominantly exposure specific with negligible overlap. The current report describes a major genomic feature of all the unique epimutations identified (535) as a very low (<10 CpG/100 bp) CpG density in sperm and somatic cells associated with transgenerational disease. The genomic locations of these epimutations were found to contain DMRs with small clusters of CpG within a general region of very low density CpG. The potential role of these epimutations on gene expression is suggested to be important.

Conclusions

Observations suggest a potential regulatory role for lower density CpG regions termed “CpG deserts”. The potential evolutionary origins of these regions is also discussed.  相似文献   

2.
3.

Background

Heritability in mate preferences is assumed by models of sexual selection, and preference evolution may contribute to adaptation to changing environments. However, mate preference is difficult to measure in natural populations as detailed data on mate availability and mate sampling are usually missing. Often the only available information is the ornamentation of the actual mate. The single long-term quantitative genetic study of a wild population found low heritability in female mate ornamentation in Swedish collared flycatchers. One potentially important cause of low heritability in mate ornamentation at the population level is reduced mate preference expression among inexperienced individuals.

Methodology/Principal Findings

Applying animal model analyses to 21 years of data from a Hungarian collared flycatcher population, we found that additive genetic variance was 50 percent and significant for ornament expression in males, but less than 5 percent and non-significant for mate ornamentation treated as a female trait. Female breeding experience predicted breeding date and clutch size, but mate ornamentation and its variance components were unrelated to experience. Although we detected significant area and year effects on mate ornamentation, more than 85 percent of variance in this trait remained unexplained. Moreover, the effects of area and year on mate ornamentation were also highly positively correlated between inexperienced and experienced females, thereby acting to remove difference between the two groups.

Conclusions/Significance

The low heritability of mate ornamentation was apparently not explained by the presence of inexperienced individuals. Our results further indicate that the expression of mate ornamentation is dominated by temporal and spatial constraints and unmeasured background factors. Future studies should reduce unexplained variance or use alternative measures of mate preference. The heritability of mate preference in the wild remains a principal but unresolved question in evolutionary ecology.  相似文献   

4.
5.
6.
7.

Background

Comparison of toxicogenomic data facilitates the identification of deregulated gene patterns and maximizes health risk prediction in human.

Results

Here, we performed phenotypic anchoring on the effects of acute exposure to low-grade polluted groundwater using mouse and zebrafish. Also, we evaluated two windows of chronic exposure in mouse, starting in utero and at the end of lactation. Bioinformatic analysis of livers microarray data showed that the number of deregulated biofunctions and pathways is higher after acute exposure, compared to the chronic one. It also revealed specific profiles of altered gene expression in all treatments, pointing to stress response/mitochondrial pathways as major players of environmental toxicity. Of note, dysfunction of steroid hormones was also predicted by bioinformatic analysis and verified in both models by traditional approaches, serum estrogens measurement and vitellogenin mRNA determination in mice and zebrafish, respectively.

Conclusions

In our report, phenotypic anchoring in two vertebrate model organisms highlights the toxicity of low-grade pollution, with varying susceptibility based on exposure window. The overlay of zebrafish and mice deregulated pathways, more than single genes, is useful in risk identification from chemicals implicated in the observed effects.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1067) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.

Background

Hair represents an evolutionary innovation that appeared early on mammalian evolutionary history, and presumably contributed significantly to the rapid radiation of the group. An interesting event in hair evolution has been its secondary loss in some mammalian groups, such as cetaceans, whose hairless phenotype appears to be an adaptive response to better meet the environmental conditions. To determine whether different repertoire of keratin genes among mammals can potentially explain the phenotypic hair features of different lineages, we characterized the type I and II clusters of alpha keratins from eight mammalian species, including the hairless dolphin and minke whale representing the order Cetacea.

Results

We combined the available genomic information with phylogenetic analysis to conduct a comprehensive analysis of the evolutionary patterns of keratin gene clusters. We found that both type I and II gene clusters are fairly conserved among the terrestrial mammals included in this study, with lineage specific gene duplication and gene loss. Nevertheless, there is also evidence for an increased rate of pseudogenization in the cetacean lineage when compared to their terrestrial relatives, especially among the hair type keratins.

Conclusions

Here we present a comprehensive characterization of alpha-keratin genes among mammals and elucidate the mechanisms involved in the evolution of this gene family. We identified lineage-specific gene duplications and gene loss among the Laurasiatherian and Euarchontoglires species included in the study. Interestingly, cetaceans present an increased loss of hair-type keratin genes when compared to other terrestrial mammals. As suggested by the ‘less-is-more’ hypothesis, we do not rule out the possibility that the gene loss of hair-type keratin genes in these species might be associated to the hairless phenotype and could have been adaptive in response to new selective pressures imposed by the colonization of a new habitat. Our study provides support for the idea that pseudogenes are not simply ‘genomic fossils’ but instead have adaptive roles during the evolutionary process.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-869) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.

Background

The bacterial cell surface is a crucial factor in cell-cell and cell-host interactions. Lactobacillus johnsonii FI9785 produces an exopolysaccharide (EPS) layer whose quantity and composition is altered in mutants that harbour genetic changes in their eps gene clusters. We have assessed the effect of changes in EPS production on cell surface characteristics that may affect the ability of L. johnsonii to colonise the poultry host and exclude pathogens.

Results

Analysis of physicochemical cell surface characteristics reflected by Zeta potential and adhesion to hexadecane showed that an increase in EPS gave a less negative, more hydrophilic surface and reduced autoaggregation. Autoaggregation was significantly higher in mutants that have reduced EPS, indicating that EPS can mask surface structures responsible for cell-cell interactions. EPS also affected biofilm formation, but here the quantity of EPS produced was not the only determinant. A reduction in EPS production increased bacterial adhesion to chicken gut explants, but made the bacteria less able to survive some stresses.

Conclusions

This study showed that manipulation of EPS production in L. johnsonii FI9785 can affect properties which may improve its performance as a competitive exclusion agent, but that positive changes in adhesion may be compromised by a reduction in the ability to survive stress.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-015-0347-2) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.

Background

By reshuffling genomes, structural genomic reorganizations provide genetic variation on which natural selection can work. Understanding the mechanisms underlying this process has been a long-standing question in evolutionary biology. In this context, our purpose in this study is to characterize the genomic regions involved in structural rearrangements between human and macaque genomes and determine their influence on meiotic recombination as a way to explore the adaptive role of genome shuffling in mammalian evolution.

Results

We first constructed a highly refined map of the structural rearrangements and evolutionary breakpoint regions in the human and rhesus macaque genomes based on orthologous genes and whole-genome sequence alignments. Using two different algorithms, we refined the genomic position of known rearrangements previously reported by cytogenetic approaches and described new putative micro-rearrangements (inversions and indels) in both genomes. A detailed analysis of the rhesus macaque genome showed that evolutionary breakpoints are in gene-rich regions, being enriched in GO terms related to immune system. We also identified defense-response genes within a chromosome inversion fixed in the macaque lineage, underlying the relevance of structural genomic changes in evolutionary and/or adaptation processes. Moreover, by combining in silico and experimental approaches, we studied the recombination pattern of specific chromosomes that have suffered rearrangements between human and macaque lineages.

Conclusions

Our data suggest that adaptive alleles – in this case, genes involved in the immune response – might have been favored by genome rearrangements in the macaque lineage.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-530) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background

Protein kinases constitute a particularly large protein family in Arabidopsis with important functions in cellular signal transduction networks. At the same time Arabidopsis is a model plant with high frequencies of gene duplications. Here, we have conducted a systematic analysis of the Arabidopsis kinase complement, the kinome, with particular focus on gene duplication events. We matched Arabidopsis proteins to a Hidden-Markov Model of eukaryotic kinases and computed a phylogeny of 942 Arabidopsis protein kinase domains and mapped their origin by gene duplication.

Results

The phylogeny showed two major clades of receptor kinases and soluble kinases, each of which was divided into functional subclades. Based on this phylogeny, association of yet uncharacterized kinases to families was possible which extended functional annotation of unknowns. Classification of gene duplications within these protein kinases revealed that representatives of cytosolic subfamilies showed a tendency to maintain segmentally duplicated genes, while some subfamilies of the receptor kinases were enriched for tandem duplicates. Although functional diversification is observed throughout most subfamilies, some instances of functional conservation among genes transposed from the same ancestor were observed. In general, a significant enrichment of essential genes was found among genes encoding for protein kinases.

Conclusions

The inferred phylogeny allowed classification and annotation of yet uncharacterized kinases. The prediction and analysis of syntenic blocks and duplication events within gene families of interest can be used to link functional biology to insights from an evolutionary viewpoint. The approach undertaken here can be applied to any gene family in any organism with an annotated genome.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-548) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

Cyanobacteria are an ancient lineage of photosynthetic bacteria from which hundreds of natural products have been described, including many notorious toxins but also potent natural products of interest to the pharmaceutical and biotechnological industries. Many of these compounds are the products of non-ribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways. However, current understanding of the diversification of these pathways is largely based on the chemical structure of the bioactive compounds, while the evolutionary forces driving their remarkable chemical diversity are poorly understood.

Results

We carried out a phylum-wide investigation of genetic diversification of the cyanobacterial NRPS and PKS pathways for the production of bioactive compounds. 452 NRPS and PKS gene clusters were identified from 89 cyanobacterial genomes, revealing a clear burst in late-branching lineages. Our genomic analysis further grouped the clusters into 286 highly diversified cluster families (CF) of pathways. Some CFs appeared vertically inherited, while others presented a more complex evolutionary history. Only a few horizontal gene transfers were evidenced amongst strongly conserved CFs in the phylum, while several others have undergone drastic gene shuffling events, which could result in the observed diversification of the pathways.

Conclusions

Therefore, in addition to toxin production, several NRPS and PKS gene clusters are devoted to important cellular processes of these bacteria such as nitrogen fixation and iron uptake. The majority of the biosynthetic clusters identified here have unknown end products, highlighting the power of genome mining for the discovery of new natural products.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-977) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background

Diapause is programmed developmental arrest coupled with the depression of metabolic activity and the enhancement of stress resistance. Pupal diapause is induced by environmental signals and is prepared during the prediapause phase. In the cotton bollworm, Helicoverpa armigera, the prediapause phase, which contains two sub-phases, diapause induction and preparation, occurs in the larval stage. Here, we performed parallel proteomic and metabolomic analyses on H. armigera larval hemolymph during the prediapause phase.

Results

By two-dimensional electrophoresis, 37 proteins were shown to be differentially expressed in diapause-destined larvae. Of these proteins, 28 were successfully identified by MALDI-TOF/TOF mass spectrometry. Moreover, a total of 22 altered metabolites were found in diapause-destined larval hemolymph by GC-MS analysis, and the levels of 17 metabolites were elevated and 5 were decreased.

Conclusions

The proteins and metabolites with significantly altered levels play different roles in diapause-destined larvae, including diapause induction, metabolic storage, immune response, stress tolerance, and others. Because hemolymph circulates through the whole body of an insect, these differences found in diapause-destined larvae most likely correspond to upstream endocrine signals and would further influence other organ/tissue activities to determine the insect’s fact: diapause or development.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-751) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.

Background

Domestic goats (Capra hircus) have been selected to play an essential role in agricultural production systems, since being domesticated from their wild progenitor, bezoar (Capra aegagrus). A detailed understanding of the genetic consequences imparted by the domestication process remains a key goal of evolutionary genomics.

Results

We constructed the reference genome of bezoar and sequenced representative breeds of domestic goats to search for genomic changes that likely have accompanied goat domestication and breed formation. Thirteen copy number variation genes associated with coat color were identified in domestic goats, among which ASIP gene duplication contributes to the generation of light coat-color phenotype in domestic goats. Analysis of rapidly evolving genes identified genic changes underlying behavior-related traits, immune response and production-related traits.

Conclusion

Based on the comparison studies of copy number variation genes and rapidly evolving genes between wild and domestic goat, our findings and methodology shed light on the genetic mechanism of animal domestication and will facilitate future goat breeding.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1606-1) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.

Background

Control of stem cell behavior is a crucial aspect of developmental biology and regenerative medicine. While the functional role of electrophysiology in stem cell biology is poorly understood, it has become clear that endogenous ion flows represent a powerful set of signals by means of which cell proliferation, differentiation, and migration can be controlled in regeneration and embryonic morphogenesis.

Methodology/Principal Findings

We examined the membrane potential (Vmem) changes exhibited by human mesenchymal stem cells (hMSCs) undergoing adipogenic (AD) and osteogenic (OS) differentiation, and uncovered a characteristic hyperpolarization of differentiated cells versus undifferentiated cells. Reversal of the progressive polarization via pharmacological modulation of transmembrane potential revealed that depolarization of hMSCs prevents differentiation. In contrast, treatment with hyperpolarizing reagents upregulated osteogenic markers.

Conclusions/Significance

Taken together, these data suggest that the endogenous hyperpolarization is a functional determinant of hMSC differentiation and is a tractable control point for modulating stem cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号