首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Several individual studies have suggested that autosomal CpG methylation differs by sex both in terms of individual CpG sites and global autosomal CpG methylation. However, these findings have been inconsistent and plagued by spurious associations due to the cross reactivity of CpG probes on commercial microarrays. We collectively analysed 76 published studies (n = 6,795) for sex-associated differences in both autosomal and sex chromosome CpG sites.

Results

Overall autosomal methylation profiles varied substantially by study, and we encountered substantial batch effects. We accounted for these by conducting random effects meta-analysis for individual autosomal CpG methylation associations. After excluding non-specific probes, we found 184 autosomal CpG sites differentially methylated by sex after correction for multiple testing. In line with previous studies, average beta differences were small. Many of the most significantly associated CpG probes were new. Of note was differential CpG methylation in the promoters of genes thought to be involved in spermatogenesis and male fertility, such as SLC9A2, SPESP1, CRISP2, and NUPL1. Pathway analysis revealed overrepresentation of genes differentially methylated by sex in several broad Gene Ontology biological processes, including RNA splicing and DNA repair.

Conclusions

This study represents a comprehensive analysis of sex-specific methylation patterns. We demonstrate the existence of sex-specific methylation profiles and report a large number of novel DNA methylation differences in autosomal CpG sites between sexes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-981) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.

Background

Previously a variety of environmental toxicants were found to promote the epigenetic transgenerational inheritance of disease through differential DNA methylation regions (DMRs), termed epimutations, present in sperm. The transgenerational epimutations in sperm and somatic cells identified in a number of previous studies were further investigated.

Results

The epimutations from six different environmental exposures were found to be predominantly exposure specific with negligible overlap. The current report describes a major genomic feature of all the unique epimutations identified (535) as a very low (<10 CpG/100 bp) CpG density in sperm and somatic cells associated with transgenerational disease. The genomic locations of these epimutations were found to contain DMRs with small clusters of CpG within a general region of very low density CpG. The potential role of these epimutations on gene expression is suggested to be important.

Conclusions

Observations suggest a potential regulatory role for lower density CpG regions termed “CpG deserts”. The potential evolutionary origins of these regions is also discussed.  相似文献   

5.

Background

The extent to which development- and age-associated epigenetic changes are influenced by genetic, environmental and stochastic factors remains to be discovered. Twins provide an ideal model with which to investigate these influences but previous cross-sectional twin studies provide contradictory evidence of within-pair epigenetic drift over time. Longitudinal twin studies can potentially address this discrepancy.

Results

In a pilot, genome-scale study of DNA from buccal epithelium, a relatively homogeneous tissue, we show that one-third of the CpGs assayed show dynamic methylation between birth and 18 months. Although all classes of annotated genomic regions assessed show an increase in DNA methylation over time, probes located in intragenic regions, enhancers and low-density CpG promoters are significantly over-represented, while CpG islands and high-CpG density promoters are depleted among the most dynamic probes. Comparison of co-twins demonstrated that within-pair drift in DNA methylation in our cohort is specific to a subset of pairs, who show more differences at 18 months. The rest of the pairs show either minimal change in methylation discordance, or more similar, converging methylation profiles at 18 months. As with age-associated regions, sites that change in their level of within-pair discordance between birth and 18 months are enriched in genes involved in development, but the average magnitude of change is smaller than for longitudinal change.

Conclusions

Our findings suggest that DNA methylation in buccal epithelium is influenced by non-shared stochastic and environmental factors that could reflect a degree of epigenetic plasticity within an otherwise constrained developmental program.  相似文献   

6.

Background

Indoxyl sulfate and p-cresyl sulfate are unique microbial co-metabolites. Both co-metabolites have been involved in the pathogenesis of accelerated cardiovascular disease and renal disease progression. Available evidence suggests that indoxyl sulfate and p-cresyl sulfate may be considered candidate biomarkers of the human enterotype and may help to explain the link between diet and cardiovascular disease burden.

Objective and Design

Information on clinical determinants and heritability of indoxyl sulfate and p-cresyl sulfate serum is non-existing. To clarify this issue, the authors determined serum levels of indoxyl sulfate and p-cresyl sulfate in 773 individuals, recruited in the frame of the Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO study).

Results

Serum levels of indoxyl sulfate and p-cresyl sulfate amounted to 3.1 (2.4–4.3) and 13.0 (7.4–21.5) μM, respectively. Regression analysis identified renal function, age and sex as independent determinants of both co-metabolites. Both serum indoxyl sulfate (h2 = 0.17) and p-cresyl sulfate (h2 = 0.18) concentrations showed moderate but significant heritability after adjustment for covariables, with significant genetic and environmental correlations for both co-metabolites.

Limitations

Family studies cannot provide conclusive evidence for a genetic contribution, as confounding by shared environmental effects can never be excluded.

Conclusions

The heritability of indoxyl sulfate and p-cresyl sulfate is moderate. Besides genetic host factors and environmental factors, also renal function, sex and age influence the serum levels of these co-metabolites.  相似文献   

7.

Background

While the possible sources underlying the so-called ‘missing heritability’ evident in current genome-wide association studies (GWAS) of complex traits have been actively pursued in recent years, resolving this mystery remains a challenging task. Studying heritability of genome-wide gene expression traits can shed light on the goal of understanding the relationship between phenotype and genotype. Here we used microarray gene expression measurements of lymphoblastoid cell lines and genome-wide SNP genotype data from 210 HapMap individuals to examine the heritability of gene expression traits.

Results

Heritability levels for expression of 10,720 genes were estimated by applying variance component model analyses and 1,043 expression quantitative loci (eQTLs) were detected. Our results indicate that gene expression traits display a bimodal distribution of heritability, one peak close to 0% and the other summit approaching 100%. Such a pattern of the within-population variability of gene expression heritability is common among different HapMap populations of unrelated individuals but different from that obtained in the CEU and YRI trio samples. Higher heritability levels are shown by housekeeping genes and genes associated with cis eQTLs. Both cis and trans eQTLs make comparable cumulative contributions to the heritability. Finally, we modelled gene-gene interactions (epistasis) for genes with multiple eQTLs and revealed that epistasis was not prevailing in all genes but made a substantial contribution in explaining total heritability for some genes analysed.

Conclusions

We utilised a mixed effect model analysis for estimating genetic components from population based samples. On basis of analyses of genome-wide gene expression from four HapMap populations, we demonstrated detailed exploitation of the distribution of genetic heritabilities for expression traits from different populations, and highlighted the importance of studying interaction at the gene expression level as an important source of variation underlying missing heritability.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-13) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background

Prenatal maternal stress (PNMS) predicts a wide variety of behavioral and physical outcomes in the offspring. Although epigenetic processes may be responsible for PNMS effects, human research is hampered by the lack of experimental methods that parallel controlled animal studies. Disasters, however, provide natural experiments that can provide models of prenatal stress.

Methods

Five months after the 1998 Quebec ice storm we recruited women who had been pregnant during the disaster and assessed their degrees of objective hardship and subjective distress. Thirteen years later, we investigated DNA methylation profiling in T cells obtained from 36 of the children, and compared selected results with those from saliva samples obtained from the same children at age 8.

Results

Prenatal maternal objective hardship was correlated with DNA methylation levels in 1675 CGs affiliated with 957 genes predominantly related to immune function; maternal subjective distress was uncorrelated. DNA methylation changes in SCG5 and LTA, both highly correlated with maternal objective stress, were comparable in T cells, peripheral blood mononuclear cells (PBMCs) and saliva cells.

Conclusions

These data provide first evidence in humans supporting the conclusion that PNMS results in a lasting, broad, and functionally organized DNA methylation signature in several tissues in offspring. By using a natural disaster model, we can infer that the epigenetic effects found in Project Ice Storm are due to objective levels of hardship experienced by the pregnant woman rather than to her level of sustained distress.  相似文献   

9.

Background

The Illumina HumanMethylation450 BeadChip (HM450K) measures the DNA methylation of 485,512 CpGs in the human genome. The technology relies on hybridization of genomic fragments to probes on the chip. However, certain genomic factors may compromise the ability to measure methylation using the array such as single nucleotide polymorphisms (SNPs), small insertions and deletions (INDELs), repetitive DNA, and regions with reduced genomic complexity. Currently, there is no clear method or pipeline for determining which of the probes on the HM450K bead array should be retained for subsequent analysis in light of these issues.

Results

We comprehensively assessed the effects of SNPs, INDELs, repeats and bisulfite induced reduced genomic complexity by comparing HM450K bead array results with whole genome bisulfite sequencing. We determined which CpG probes provided accurate or noisy signals. From this, we derived a set of high-quality probes that provide unadulterated measurements of DNA methylation.

Conclusions

Our method significantly reduces the risk of false discoveries when using the HM450K bead array, while maximising the power of the array to detect methylation status genome-wide. Additionally, we demonstrate the utility of our method through extraction of biologically relevant epigenetic changes in prostate cancer.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-51) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background

Localising regulatory variants that control gene expression is a challenge for genome research. Several studies have recently identified non-coding polymorphisms associated with inter-individual differences in gene expression. These approaches rely on the identification of signals of association against a background of variation due to other genetic and environmental factors. A complementary approach is to use an Allele-Specific Expression (ASE) assay, which is more robust to the effects of environmental variation and trans-acting genetic factors.

Methodology/Principal Findings

Here we apply an ASE method which utilises heterozygosity within an individual to compare expression of the two alleles of a gene in a single cell. We used individuals from three HapMap population groups and analysed the allelic expression of genes with cis-regulatory regions previously identified using total gene expression studies. We were able to replicate the results in five of the six genes tested, and refined the cis- associated regions to a small number of variants. We also showed that by using multi-populations it is possible to refine the associated cis-effect DNA regions.

Conclusions/Significance

We discuss the efficacy and drawbacks of both total gene expression and ASE approaches in the discovery of cis-acting variants. We show that the ASE approach has significant advantages as it is a cleaner representation of cis-acting effects. We also discuss the implication of using different populations to map cis-acting regions and the importance of finding regulatory variants which contribute to human phenotypic variation.  相似文献   

11.

Background

DNA methylation is a common regulator of gene expression, including acting as a regulator of developmental events and behavioral changes in adults. Using the unique system of genetic caste determination in Pogonomyrmex barbatus, we were able to document changes in DNA methylation during development, and also across both ancient and contemporary hybridization events.

Methodology/Principal Findings

Sodium bisulfite sequencing demonstrated in vivo methylation of symmetric CG dinucleotides in P. barbatus. We also found methylation of non-CpG sequences. This validated two bioinformatics methods for predicting gene methylation, the bias in observed to expected ratio of CpG dinucleotides and the density of CpG/TpG single nucleotide polymorphisms (SNP). Frequencies of genomic DNA methylation were determined for different developmental stages and castes using ms-AFLP assays. The genetic caste determination system (GCD) is probably the product of an ancestral hybridization event between P. barbatus and P. rugosus. Two lineages obligately co-occur within a GCD population, and queens are derived from intra-lineage matings whereas workers are produced from inter-lineage matings. Relative DNA methylation levels of queens and workers from GCD lineages (contemporary hybrids) were not significantly different until adulthood. Virgin queens had significantly higher relative levels of DNA methylation compared to workers. Worker DNA methylation did not vary among developmental stages within each lineage, but was significantly different between the currently hybridizing lineages. Finally, workers of the two genetic caste determination lineages had half as many methylated cytosines as workers from the putative parental species, which have environmental caste determination.

Conclusions/Significance

These results suggest that DNA methylation may be a conserved regulatory mechanism moderating division of labor in both bees and ants. Current and historic hybridization appear to have altered genomic methylation levels suggesting a possible link between changes in overall DNA methylation and the origin and regulation of genetic caste determination in P. barbatus.  相似文献   

12.

Background

Studies of DNA methylomes in a wide range of eukaryotes have revealed both conserved and divergent characteristics of DNA methylation among phylogenetic groups. However, data on invertebrates particularly molluscs are limited, which hinders our understanding of the evolution of DNA methylation in metazoa. The sequencing of the Pacific oyster Crassostrea gigas genome provides an opportunity for genome-wide profiling of DNA methylation in this model mollusc.

Results

Homologous searches against the C. gigas genome identified functional orthologs for key genes involved in DNA methylation: DNMT1, DNMT2, DNMT3, MBD2/3 and UHRF1. Whole-genome bisulfite sequencing (BS-seq) of the oyster’s mantle tissues revealed that more than 99% methylation modification was restricted to cytosines in CpG context and methylated CpGs accumulated in the bodies of genes that were moderately expressed. Young repeat elements were another major targets of CpG methylation in oysters. Comparison with other invertebrate methylomes suggested that the 5’-end bias of gene body methylation and the negative correlation between gene body methylation and gene length were the derived features probably limited to the insect lineage. Interestingly, phylostratigraphic analysis showed that CpG methylation preferentially targeted genes originating in the common ancestor of eukaryotes rather than the oldest genes originating in the common ancestor of cellular organisms.

Conclusions

Comparative analysis of the oyster DNA methylomes and that of other animal species revealed that the characteristics of DNA methylation were generally conserved during invertebrate evolution, while some unique features were derived in the insect lineage. The preference of methylation modification on genes originating in the eukaryotic ancestor rather than the oldest genes is unexpected, probably implying that the emergence of methylation regulation in these ''relatively young’ genes was critical for the origin and radiation of eukaryotes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1119) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

Patient-derived tumour xenografts are an attractive model for preclinical testing of anti-cancer drugs. Insights into tumour biology and biomarkers predictive of responses to chemotherapeutic drugs can also be gained from investigating xenograft models. As a first step towards examining the equivalence of epigenetic profiles between xenografts and primary tumours in paediatric leukaemia, we performed genome-scale DNA methylation and gene expression profiling on a panel of 10 paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) tumours that were stratified by prednisolone response.

Results

We found high correlations in DNA methylation and gene expression profiles between matching primary and xenograft tumour samples with Pearson’s correlation coefficients ranging between 0.85 and 0.98. In order to demonstrate the potential utility of epigenetic analyses in BCP-ALL xenografts, we identified DNA methylation biomarkers that correlated with prednisolone responsiveness of the original tumour samples. Differential methylation of CAPS2, ARHGAP21, ARX and HOXB6 were confirmed by locus specific analysis. We identified 20 genes showing an inverse relationship between DNA methylation and gene expression in association with prednisolone response. Pathway analysis of these genes implicated apoptosis, cell signalling and cell structure networks in prednisolone responsiveness.

Conclusions

The findings of this study confirm the stability of epigenetic and gene expression profiles of paediatric BCP-ALL propagated in mouse xenograft models. Further, our preliminary investigation of prednisolone sensitivity highlights the utility of mouse xenograft models for preclinical development of novel drug regimens with parallel investigation of underlying gene expression and epigenetic responses associated with novel drug responses.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-416) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
16.

Background

Clostridium difficile strain 630Δerm is a spontaneous erythromycin sensitive derivative of the reference strain 630 obtained by serial passaging in antibiotic-free media. It is widely used as a defined and tractable C. difficile strain. Though largely similar to the ancestral strain, it demonstrates phenotypic differences that might be the result of underlying genetic changes. Here, we performed a de novo assembly based on single-molecule real-time sequencing and an analysis of major methylation patterns.

Results

In addition to single nucleotide polymorphisms and various indels, we found that the mobile element CTn5 is present in the gene encoding the methyltransferase rumA rather than adhesin CD1844 where it is located in the reference strain.

Conclusions

Together, the genetic features identified in this study may help to explain at least part of the phenotypic differences. The annotated genome sequence of this lab strain, including the first analysis of major methylation patterns, will be a valuable resource for genetic research on C. difficile.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1252-7) contains supplementary material, which is available to authorized users.  相似文献   

17.

Background

Allergic inflammation is commonly observed in a number of conditions that are associated with atopy including asthma, eczema and rhinitis. However, the genetic, environmental or epigenetic factors involved in these conditions are likely to be different. Epigenetic modifications, such as DNA methylation, can be influenced by the environment and result in changes to gene expression.

Objectives

To characterize the DNA methylation pattern of airway epithelial cells (AECs) compared to peripheral blood mononuclear cells (PBMCs) and to discern differences in methylation within each cell type amongst healthy, atopic and asthmatic subjects.

Methods

PBMCs and AECs from bronchial brushings were obtained from children undergoing elective surgery for non-respiratory conditions. The children were categorized as atopic, atopic asthmatic, non-atopic asthmatic or healthy controls. Extracted DNA was bisulfite treated and 1505 CpG loci across 807 genes were analyzed using the Illumina GoldenGate Methylation Cancer Panel I. Gene expression for a subset of genes was performed using RT-PCR.

Results

We demonstrate a signature set of CpG sites that are differentially methylated in AECs as compared to PBMCs regardless of disease phenotype. Of these, 13 CpG sites were specific to healthy controls, 8 sites were only found in atopics, and 6 CpGs were unique to asthmatics. We found no differences in the methylation status of PBMCs between disease phenotypes. In AECs derived from asthmatics compared to atopics, 8 differentially methylated sites were identified including CpGs in STAT5A and CRIP1. We demonstrate STAT5A gene expression is decreased whereas CRIP1 gene expression is elevated in the AECs from asthmatic compared to both healthy and atopic subjects.

Discussion

We characterized a cell specific DNA methylation signature for AECs compared to PBMCs regardless of asthmatic or atopic status. Our data highlight the importance of understanding DNA methylation in the epithelium when studying the epithelial contribution to asthma.  相似文献   

18.

Background

DNA methylation plays an essential role in regulating gene expression under a variety of conditions and it has therefore been hypothesized to underlie the transitions between life cycle stages in parasitic nematodes. So far, however, 5''-cytosine methylation has not been detected during any developmental stage of the nematode Caenorhabditis elegans. Given the new availability of high-resolution methylation detection methods, an investigation of life cycle methylation in a parasitic nematode can now be carried out.

Results

Here, using MethylC-seq, we present the first study to confirm the existence of DNA methylation in the parasitic nematode Trichinella spiralis, and we characterize the methylomes of the three life-cycle stages of this food-borne infectious human pathogen. We observe a drastic increase in DNA methylation during the transition from the new born to mature stage, and we further identify parasitism-related genes that show changes in DNA methylation status between life cycle stages.

Conclusions

Our data contribute to the understanding of the developmental changes that occur in an important human parasite, and raises the possibility that targeting DNA methylation processes may be a useful strategy in developing therapeutics to impede infection. In addition, our conclusion that DNA methylation is a mechanism for life cycle transition in T. spiralis prompts the question of whether this may also be the case in any other metazoans. Finally, our work constitutes the first report, to our knowledge, of DNA methylation in a nematode, prompting a re-evaluation of phyla in which this epigenetic mark was thought to be absent.  相似文献   

19.
20.

Background

In invertebrates, genes belonging to dynamically regulated functional categories appear to be less methylated than “housekeeping” genes, suggesting that DNA methylation may modulate gene expression plasticity. To date, however, experimental evidence to support this hypothesis across different natural habitats has been lacking.

Results

Gene expression profiles were generated from 30 pairs of genetically identical fragments of coral Acropora millepora reciprocally transplanted between distinct natural habitats for 3 months. Gene expression was analyzed in the context of normalized CpG content, a well-established signature of historical germline DNA methylation. Genes with weak methylation signatures were more likely to demonstrate differential expression based on both transplant environment and population of origin than genes with strong methylation signatures. Moreover, the magnitude of expression differences due to environment and population were greater for genes with weak methylation signatures.

Conclusions

Our results support a connection between differential germline methylation and gene expression flexibility across environments and populations. Studies of phylogenetically basal invertebrates such as corals will further elucidate the fundamental functional aspects of gene body methylation in Metazoa.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1109) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号