首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exhibits potent barrier protective effects on pulmonary endothelium, which are mediated by small GTPases Rac and Cdc42. However, upstream mechanisms of OxPAPC-induced small GTPase activation are not known. We studied involvement of Rac/Cdc42-specific guanine nucleotide exchange factors (GEFs) Tiam1 and betaPIX in OxPAPC-induced Rac activation, cytoskeletal remodeling, and barrier protective responses in the human pulmonary endothelial cells (EC). OxPAPC induced membrane translocation of Tiam1, betaPIX, Cdc42, and Rac, but did not affect intracellular distribution of Rho and Rho-specific GEF p115-RhoGEF. Protein depletion of Tiam1 and betaPIX using siRNA approach abolished OxPAPC-induced activation of Rac and its effector PAK1. EC transfection with Tiam1-, betaPIX-, or PAK1-specific siRNA dramatically attenuated OxPAPC-induced barrier enhancement, peripheral actin cytoskeletal enhancement, and translocation of actin-binding proteins cortactin and Arp3. These results show for the first time that Tiam1 and betaPIX mediate OxPAPC-induced Rac activation, cytoskeletal remodeling, and barrier protective response in pulmonary endothelium.  相似文献   

2.
3.
Previous studies showed that cyclopenthenone-containing products resulting from oxidation of a natural phospholipid, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exhibit potent barrier-protective effects in the in vitro and in vivo models of lung endothelial cell (EC) barrier dysfunction, and these effects are associated with enhancement of peripheral actin cytoskeleton, cell-cell and cell-substrate contacts driven by activation of Rac and Cdc42 GTPases. Rap1 GTPase is another member of small GTPase family involved in control of cell-cell interactions; however, its involvement in EC barrier-protective effects by OxPAPC remains unknown. This study examined a role of Rap1 in regulation of OxPAPC-induced interactions in adherens junctions (AJ) and tight junctions (TJ) as a novel mechanism of EC barrier preservation in vitro and in vivo. Immunofluorescence analysis, subcellular fractionation, and co-immunoprecipitation assays indicate that OxPAPC promoted accumulation of AJ proteins: VE-cadherin, p120-catenin, and β-catenin; and TJ proteins: ZO-1, occludin, and JAM-A in the cell membrane, and induced novel cross-interactions between AJ and TJ protein complexes, that were dependent on OxPAPC-induced Rap1 activation. Inhibition of Rap1 function suppressed OxPAPC-mediated pulmonary EC barrier enhancement and AJ and TJ interactions in vitro, as well as inhibited protective effects of OxPAPC against ventilator-induced lung injury in vivo. These results show for the first time a role of Rap1-mediated association between adherens junctions and tight junction complexes in the OxPAPC-induced pulmonary vascular EC barrier protection.  相似文献   

4.
The ubiquitously expressed molecular chaperone GRP78 (78 kDa glucose-regulated protein) generally localizes to the ER (endoplasmic reticulum). GRP78 is specifically induced in cells under the UPR (unfolded protein response), which can be elicited by treatments with calcium ionophore A23187 and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase inhibitor TG (thapsigargin). By using confocal microscopy, we have demonstrated that GRP78 was concentrated in the perinuclear region and co-localized with the ER marker proteins, calnexin and PDI (protein disulphide-isomerase), in cells under normal growth conditions. However, treatments with A23187 and TG led to diminish its ER targeting, resulting in redirection into a cytoplasmic vesicular pattern, and overlapping with the mitochondrial marker MitoTracker. Cellular fractionation and protease digestion of isolated mitochondria from ER-stressed cells suggested that a significant portion of GRP78 is localized to the mitochondria and is protease-resistant. Localizations of GRP78 in ER and mitochondria were confirmed by using immunoelectron microscopy. In ER-stressed cells, GRP78 mainly localized within the mitochondria and decorated the mitochondrial membrane compartment. Submitochondrial fractionation studies indicated further that the mitochondria-resided GRP78 is mainly located in the intermembrane space, inner membrane and matrix, but is not associated with the outer membrane. Furthermore, radioactive labelling followed by subcellular fractionation showed that a significant portion of the newly synthesized GRP78 is localized to the mitochondria in cells under UPR. Taken together, our results indicate that, at least under certain circumstances, the ER-resided chaperone GRP78 can be retargeted to mitochondria and thereby may be involved in correlating UPR signalling between these two organelles.  相似文献   

5.
6.
《Autophagy》2013,9(11):1577-1589
Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. The mechanisms underlying ethanol-induced neurodegeneration are complex. Ethanol exposure produces reactive oxygen species (ROS) which cause oxidative stress in the brain. We hypothesized that ethanol would activate autophagy to alleviate oxidative stress and neurotoxicity. Our results indicated that ethanol increased the level of the autophagic marker Map1lc3-II (LC3-II) and upregulated LC3 puncta in SH-SY5Y neuroblastoma cells. It also enhanced the levels of LC3-II and BECN1 in the developing brain; meanwhile, ethanol reduced SQSTM1 (p62) levels. Bafilomycin A1, an inhibitor of autophagosome and lysosome fusion, increased p62 levels in the presence of ethanol. Bafilomycin A1 and rapamycin potentiated ethanol-increased LC3 lipidation, whereas wortmannin and a BECN1-specific shRNA inhibited ethanol-promoted LC3 lipidation. Ethanol increased mitophagy, which was also modulated by BECN1 shRNA and rapamycin. The evidence suggested that ethanol promoted autophagic flux. Activation of autophagy by rapamycin reduced ethanol-induced ROS generation and ameliorated ethanol-induced neuronal death in vitro and in the developing brain, whereas inhibition of autophagy by wortmannin and BECN1-specific shRNA potentiated ethanol-induced ROS production and exacerbated ethanol neurotoxicity. Furthermore, ethanol inhibited the MTOR pathway and downregulation of MTOR offered neuroprotection. Taken together, the results suggest that autophagy activation is a neuroprotective response to alleviate ethanol toxicity. Ethanol modulation of autophagic activity may be mediated by the MTOR pathway.  相似文献   

7.
Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. The mechanisms underlying ethanol-induced neurodegeneration are complex. Ethanol exposure produces reactive oxygen species (ROS) which cause oxidative stress in the brain. We hypothesized that ethanol would activate autophagy to alleviate oxidative stress and neurotoxicity. Our results indicated that ethanol increased the level of the autophagic marker Map1lc3-II (LC3-II) and upregulated LC3 puncta in SH-SY5Y neuroblastoma cells. It also enhanced the levels of LC3-II and BECN1 in the developing brain; meanwhile, ethanol reduced SQSTM1 (p62) levels. Bafilomycin A1, an inhibitor of autophagosome and lysosome fusion, increased p62 levels in the presence of ethanol. Bafilomycin A1 and rapamycin potentiated ethanol-increased LC3 lipidation, whereas wortmannin and a BECN1-specific shRNA inhibited ethanol-promoted LC3 lipidation. Ethanol increased mitophagy, which was also modulated by BECN1 shRNA and rapamycin. The evidence suggested that ethanol promoted autophagic flux. Activation of autophagy by rapamycin reduced ethanol-induced ROS generation and ameliorated ethanol-induced neuronal death in vitro and in the developing brain, whereas inhibition of autophagy by wortmannin and BECN1-specific shRNA potentiated ethanol-induced ROS production and exacerbated ethanol neurotoxicity. Furthermore, ethanol inhibited the MTOR pathway and downregulation of MTOR offered neuroprotection. Taken together, the results suggest that autophagy activation is a neuroprotective response to alleviate ethanol toxicity. Ethanol modulation of autophagic activity may be mediated by the MTOR pathway.  相似文献   

8.
The full-length cDNA clone of a novel GRP78-binding protein (GBP) was isolated from rat brain using PCR-selected cDNA subtraction. GBP was predominantly expressed in neuronal cells among various brain tissues. GBP mRNA was already detected in the E12 brain and then gradually increased to reach a peak within P0-2 weeks after birth. GBP expression in the brain decreased age-dependently to approximately 30% of the postnatal level at 12 months. GBP encoded 1021 amino acids and was predicted to have two transmembrane regions and glutamic acid- and proline-rich regions. Because the sequence of GBP offered few clues to the possible function, we performed a GST-tagged GBP pull-down assay in PC12 lysates and identified GRP78, one of the heat shock proteins, as a counterpart. Observation of COS7 cells expressing green fluorescent protein- or Myc-tagged GBP showed that GBP was localized in the endoplasmic reticulum-Golgi domain where BODIPY 558/568 (4,4-difluro-5-(2-thienyl)-4-bora-3alpha,4alpha-diaza-S-indacene)-labeled brefeldin A accumulated. To investigate a biological role for GBP, we established Neuro2a cells stably expressing Myc-tagged GBP. Overexpression of GBP did not affect cell growth or morphological features but attenuated the time-dependent decrease in cell viability caused by serum deprivation compared with control cells. After 48 h of serum starvation, Neuro2a cells overexpressing GBP were resistant to the cell death induced by serum withdrawal. These results suggest that GBP would have a relevant functional role in embryonic and postnatal development of the brain.  相似文献   

9.
Afadin is a novel regulator of epithelial cell junctions assembly. However, its role in the formation of endothelial cell junctions and the regulation of vascular permeability remains obscure. We previously described protective effects of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) in the in vitro and in vivo models of lung endothelial barrier dysfunction and acute lung injury, which were mediated by Rac GTPase. This study examined a role of afadin in the OxPAPC-induced enhancement of interactions between adherens junctions and tight junctions as a novel mechanism of endothelial cell (EC) barrier preservation. OxPAPC induced Rap1-dependent afadin accumulation at the cell periphery and Rap1-dependent afadin interaction with adherens junction and tight junction proteins p120-catenin and ZO-1, respectively. Afadin knockdown using siRNA or ectopic expression of afadin mutant lacking Rap1 GTPase binding domain suppressed OxPAPC-induced EC barrier enhancement and abolished barrier protective effects of OxPAPC against thrombin-induced EC permeability. Afadin knockdown also abolished protective effects of OxPAPC against ventilator-induced lung injury in vivo. These results demonstrate for the first time a critical role of afadin in the regulation of vascular barrier function in vitro and in vivo via coordination of adherens junction-tight junction interactions.  相似文献   

10.
The macrophage scavenger receptor CD36 plays an important role in the uptake of oxidized forms of low density lipoprotein (LDL) and contributes to lesion development in murine models of atherosclerosis. However, the structural basis of CD36 lipoprotein ligand recognition is unknown. We now identify a novel class of oxidized phospholipids that serve as high affinity ligands for CD36 and mediate recognition of oxidized forms of LDL by CD36 on macrophages. Small unilamellar vesicles of homogeneous phosphatidylcholine (PC) molecular species were oxidized by the myeloperoxidase (MPO)-H(2)O(2)-NO(2)(-) system, and products were separated by sequential LC/ESI/MS/MS. In parallel, fractions were tested for their ability to bind to CD36. Four major structurally related phospholipids with CD36 binding activity were identified from oxidized 1-palmitoyl-2-arachidonyl-PC, and four corresponding structural analogs with CD36 binding activity were identified from oxidized 1-palmitoyl-2-linoleoyl-PC. Each was then synthetically prepared, its structure confirmed by multinuclear NMR and high resolution mass spectrometry, and shown to possess identical CD36 binding activity and LC/ESI/MS/MS characteristics in both native and derivatized forms. Based upon the structures of the active compounds identified, and structure-function studies with a variety of synthetic analogs, we conclude that the structural characteristics required for high affinity binding of oxidized PC species to CD36 are a phospholipid with an sn-2 acyl group that incorporates a terminal gamma-hydroxy(or oxo)-alpha,beta-unsaturated carbonyl (oxPC(CD36)). LC/ESI/MS/MS studies demonstrate that oxPC(CD36) are formed during LDL oxidation by multiple distinct pathways. Formation of this novel class of oxidized PC species contributes to CD36-mediated recognition of LDL oxidized by MPO and other biologically relevant mechanisms. The present results offer structural insights into the molecular patterns recognized by the scavenger receptor CD36 and provide a platform for the development of potential therapeutic inhibitory agents.  相似文献   

11.
K Motojima  S Goto 《FEBS letters》1992,308(2):207-210
Administration of clofibrate in rat results in down-regulation of several liver proteins and a vast induction of peroxisomal proteins. One protein was identified as BiP/GRP78 using antibodies and cDNA cloning. The level of mRNA was reduced by the drug.  相似文献   

12.
Hematopoietic stem cells (HSCs) are maintained in hypoxic niches in endosteal regions of bones. Here we demonstrate that Cripto and its receptor GRP78 are important regulators of HSCs in the niche. Flow cytometry analyses revealed two distinct subpopulations of CD34(-)KSL cells based on the expression of GRP78, and these populations showed different reconstitution potential in transplantation assays. GRP78(+)HSCs mainly reside in the endosteal area, are more hypoxic, and exhibit a lower mitochondrial potential, and their HSC capacity was maintained in?vitro by Cripto through induction of higher glycolytic activity. Additionally, HIF-1α KO mice have decreased numbers of GRP78(+)HSCs and reduced expression of Cripto in the endosteal niche. Furthermore, blocking GRP78 induced a movement of HSCs from the endosteal to the central marrow area. These data suggest that Cripto/GRP78 signaling is an important pathway that regulates HSC quiescence and maintains HSCs in hypoxia as an intermediary of HIF-1α.  相似文献   

13.
14.
15.
The macrophage scavenger receptor CD36 plays an important role in binding and uptake of oxidized forms of low-density lipoprotein (LDL), foam cell formation, and lesion development during atherosclerosis. The structural basis of CD36-lipoprotein ligand recognition is an area of intense interest. In a companion article we reported the characterization of a structurally conserved family of oxidized choline glycerophospholipids (oxPC(CD36)) that serve as novel high affinity ligands for cells stably transfected with CD36, mediating recognition of multiple oxidized forms of LDL (Podrez, E. A., Poliakov, E., Shen, Z., Zhang, R., Deng, Y., Sun, M., Finton, P., Shan, L., Gugiu, B., Fox, P. L., Hoff, H. F., Salomon, R. G., and Hazen, S. L. (July 8, 2002) J. Biol. Chem. 277, 10.1074/jbc.M203318200). Here we use macrophages from wild-type and CD36 null mice to demonstrate that CD36 is the major receptor on macrophages mediating recognition of oxPC(CD36) species when presented (+/- plasma) in pure form, within PC bilayers in small unilamellar vesicles, and within liposomes generated from lipid extracts of native LDL. We also show that oxPC(CD36) promote CD36-dependent recognition when present at only a few molecules per particle, resulting in macrophage binding, uptake, metabolism, cholesterol accumulation, and foam cell formation. Finally, using high performance liquid chromatography with on-line electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS), we demonstrate that oxPC(CD36) are generated in vivo and are enriched in atherosclerotic lesions. Collectively, our data suggest that formation of this novel family of oxidized phospholipids participates in CD36-mediated recognition of oxidized lipoproteins and foam cell formation in vivo.  相似文献   

16.
17.
Chinese hamster ovary (CHO) cells are regarded as one of the most commonly used mammalian hosts, which decreases the productivity due to loss in culture viability. Overexpressing antiapoptosis genes in CHO cells was developed as a means of limiting cell death upon exposure to environmental insults. Glucose‐regulated protein 78 (GRP78) is traditionally regarded as a major ER chaperone that participates in protein folding and other cell processes. It is also a potent antiapoptotic protein and plays a critical role in cell survival, proliferation, and metastasis. In this study, the impact of GRP78 on CHO cells in response to environmental insults such as serum deprivation and oxidative stress was investigated. First, it was confirmed that CHO cells were very sensitive to environmental insults. Then, GRP78 overexpressing CHO cell line was established and exposed to serum deprivation and H2O2. Results showed that GRP78 engineering increased the viability and decreased the apoptosis of CHO cells. The survival advantage due to GRP78 engineering could be mediated by suppression of caspase‐3 involved in cell death pathways in stressed cells. Besides, GRP78 engineering also enhanced yields of antibody against transferrin receptor in CHO cells. GRP78 should be a potential application in the biopharmaceutical industries.  相似文献   

18.
Scavenger receptors are membrane glycoproteins that bind diverse ligands including lipid particles, phospholipids, apoptotic cells and pathogens. LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) is increasingly linked to atherosclerotic plaque formation. Transgenic mouse models for LOX-1 overexpression or gene knockout suggests that LOX-1 contributes to atherosclerotic plaque formation and progression. LOX-1 activation by oxidized LDL (low-density lipoprotein) binding stimulates intracellular signalling, gene expression and production of superoxide radicals. A key question is the role of leucocyte LOX-1 in pro-atherogenic lipid particle trafficking, accumulation and signalling leading to differentiation into foam cells, necrosis and plaque development. LOX-1 expression is elevated within vascular lesions and a serum soluble LOX-1 fragment appears diagnostic of patients with acute coronary syndromes. LOX-1 is increasingly viewed as a vascular disease biomarker and a potential therapeutic target in heart attack and stroke prevention.  相似文献   

19.
20.
The effects of La3+ on the unfolded protein response signaling pathways were investigated in human hepatoblastoma HepG2 cells. Our data showed that La3+ could induce unfolded protein response in HepG2 cells, including a significant increase of BiP/GRP78 level, which is an important ER residential chaperone and an ER stress hallmark, in a concentration and time-dependent manner, UPR transducer IRE1 phosphorylation and splicing activation IRE1 downstream substrate XBP1 mRNA. By using La3+-affinity chromatography, the possible cellular target of La3+ leading to UPR events was shown to be the ER residential chaperone BiP/GRP78. BiP/GRP78 was shown to be a La3+ binding protein and the interaction of La3+ with BiP/GRP78 resulted in dissociation of BiP-IRE1 complexes. La3+ induced dissociation of the BiP/GRP78-IRE1 complex was in a time and concentration manner. The apparent dissociation constant was estimated to be 4 nM. In addition, La3+ was observed to slightly stimulate the production of cellular ROS and cause alteration of intracellular Ca2+, indicating the possible involvement of ROS and Ca2+ alteration in La3+ induced UPR. The present work provides a new perspective for understanding the biological and toxicological effects of La3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号