首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interactions among Bcl-2 family proteins are important for regulating apoptosis. Prosurvival members of the family interact with proapoptotic BH3 (Bcl-2-homology-3)-only members, inhibiting execution of cell death through the mitochondrial pathway. Structurally, this interaction is mediated by binding of the α-helical BH3 region of the proapoptotic proteins to a conserved hydrophobic groove on the prosurvival proteins. Native BH3-only proteins exhibit selectivity in binding prosurvival members, as do small molecules that block these interactions. Understanding the sequence and structural basis of interaction specificity in this family is important, as it may allow the prediction of new Bcl-2 family associations and/or the design of new classes of selective inhibitors to serve as reagents or therapeutics. In this work, we used two complementary techniques—yeast surface display screening from combinatorial peptide libraries and SPOT peptide array analysis—to elucidate specificity determinants for binding to Bcl-xLversus Mcl-1, two prominent prosurvival proteins. We screened a randomized library and identified BH3 peptides that bound to either Mcl-1 or Bcl-xL selectively or to both with high affinity. The peptides competed with native ligands for binding into the conserved hydrophobic groove, as illustrated in detail by a crystal structure of a specific peptide bound to Mcl-1. Mcl-1-selective peptides from the screen were highly specific for binding Mcl-1 in preference to Bcl-xL, Bcl-2, Bcl-w, and Bfl-1, whereas Bcl-xL-selective peptides showed some cross-interaction with related proteins Bcl-2 and Bcl-w. Mutational analyses using SPOT arrays revealed the effects of 170 point mutations made in the background of a peptide derived from the BH3 region of Bim, and a simple predictive model constructed using these data explained much of the specificity observed in our Mcl-1 versus Bcl-xL binders.  相似文献   

2.
《Autophagy》2013,9(6):561-568
Autophagy, a cellular degradation system, promotes both cell death and survival. The interaction between Bcl-2 family proteins and Beclin 1, a Bcl-2 interacting protein that promotes autophagy, can mediate crosstalk between autophagy and apoptosis. We investigated the interaction between anti-and pro-apoptotic Bcl-2 proteins with Beclin 1. Our results show that Beclin 1 directly interacts with Bcl-2, Bcl-xL, Bcl-w and to a lesser extent with Mcl-1. Beclin 1 does not bind the pro-apoptotic Bcl-2 proteins. The interaction between Beclin 1 and the anti-apoptotic protein Bcl-xL was inhibited by BH3-only proteins, but not by multi-domain proteins. Sequence alignment and structural modeling suggest that Beclin 1 contains a putative BH3-like domain which may interact with the hydrophobic grove of Bcl-xL. Mutation of the Beclin 1 amino acids predicted to mediate this interaction inhibited the association of Beclin 1 with Bcl-xL. Our results suggest that BH3 only proapoptotic Bcl-2 proteins may modulate the interactions between Bcl-xL and Beclin 1.  相似文献   

3.
Apoptosis is initiated when Bcl-2 and its prosurvival relatives are engaged by proapoptotic BH3-only proteins via interaction of its BH3 domain with a groove on the Bcl-2-like proteins. These interactions have been considered promiscuous, but our analysis of the affinity of eight BH3 peptides for five Bcl-2-like proteins has revealed that the interactions vary over 10,000-fold in affinity, and accordingly, only certain protein pairs associate inside cells. Bim and Puma potently engaged all the prosurvival proteins comparably. Bad, however, bound tightly to Bcl-2, Bcl-xL, and Bcl-w but only weakly to A1 and not to Mcl-1. Strikingly, Noxa bound only Mcl-1 and A1. In accord with their complementary binding, Bad and Noxa cooperated to induce potent killing. The results suggest that apoptosis relies on selective interactions between particular subsets of these proteins and that it should be feasible to discover BH3-mimetic drugs that inactivate specific prosurvival targets.  相似文献   

4.
The Bcl-2 family regulates apoptosis by controlling mitochondrial integrity. To clarify whether its prosurvival members function by sequestering their Bcl-2 homology 3 (BH3)-only ligands or their multidomain relatives Bak and Bax, we analyzed whether four prosurvival proteins differing in their ability to bind specific BH3 peptides or Bak could protect isolated mitochondria. Most BH3 peptides could induce temperature-dependent cytochrome c release, but permeabilization was prevented by Bcl-x(L), Bcl-w, Mcl-1, or BHRF1. However, their protection correlated with the ability to bind Bak rather than the added BH3 peptide and could be overcome only by BH3 peptides that bind directly to the appropriate prosurvival member. Mitochondria protected by both Bcl-x(L)-like and Mcl-1 proteins were disrupted only by BH3 peptides that engage both. BH3-only reagents freed Bak from Bcl-x(L) and Mcl-1 in mitochondrial and cell lysates. The findings support a model for the control of apoptosis in which certain prosurvival proteins sequester Bak/Bax, and BH3-only proteins must neutralize all protective prosurvival proteins to allow Bak/Bax to induce mitochondrial disruption.  相似文献   

5.
6.
The B cell lymphoma-2 (Bcl-2) homologs myeloid cell leukemia-1 (Mcl-1) and A1 are prosurvival factors that selectively bind a subset of proapoptotic Bcl homology (BH) 3-only proteins. To investigate the molecular basis of the selectivity, we determined the solution structure of the C-terminal Bcl-2-like domain of Mcl-1. This domain shares features expected of a prosurvival Bcl-2 protein, having a helical fold centered on a core hydrophobic helix and a surface-exposed hydrophobic groove for binding its cognate partners. A number of residues in the binding groove differentiate Mcl-1 from its homologs, and in contrast to other Bcl-2 homologs, Mcl-1 has a binding groove in a conformation intermediate between the open structures characterized by peptide complexes and the closed state observed in unliganded structures. Mutagenesis of potential binding site residues was used to probe the contributions of groove residues to the binding properties of Mcl-1. Although mutations in Mcl-1 had little impact on binding, a single mutation in the BH3-only ligand Bad enabled it to bind both Mcl-1 and A1 while retaining its binding to Bcl-2, Bcl-xL, and Bcl-w. Elucidating the selective action of certain BH3-only ligands is required for delineating their mode of action and will aid the search for effective BH3-mimetic drugs.  相似文献   

7.
Bcl-2 family proteins regulate apoptosis through their homo- and heterodimerization. By protein sequence analysis and structural comparison, we have identified a conserved hydrophobic core at the BH1 and BH2 domains of Bcl-2 family proteins. The hydrophobic core is stabilized by hydrophobic interactions among the residues of Trp137, Ile140, Trp181, Ile182, Trp188 and Phe191 in Bcl-xL. Destabilization of the hydrophobic core can promote the protein unfolding and pore formation in synthetic lipid vesicles. Interestingly, though the hydrophobic core does not participate in binding with BH3 domain of pro-apoptotic proteins, disruption of the hydrophobic core can reduce the affinity of Bcl-xL with BH3-domain peptide by changing the conformation of Bcl-xL C-terminal residues that are involved in the peptide interaction. The BH3-domain peptide binding affinity and pore forming propensity of Bcl-xL were correlated to its death-repressor activity, which provides new information to help study the regulatory mechanism of anti-apoptotic proteins. Meanwhile, as the tryptophans are conserved in the hydrophobic core, in vitro binding assay based on FRET of “Trp → AEDANS” can be devised to screen for new modulators targeting anti-apoptotic proteins as well as “multi-BH domains” pro-apoptotic proteins.  相似文献   

8.
The key event in the mitochondrial pathway of apoptosis is the activation of Bax and Bak by BH3-only proteins through a molecular mechanism that is still a matter of debate. Here we studied interactions among anti- and proapoptotic proteins of the Bcl-2 family in living cells by using bimolecular fluorescence complementation analysis. Our results indicate that the antiapoptotic proteins Mcl-1 and Bcl-xL bind preferably to the BH3-only proteins Bim, PUMA, and Noxa but can also bind to Bak and Bax. We also found a direct interaction between Bim, PUMA, or Noxa with either Bax or Bak during apoptosis induction. In HeLa cells, interaction of Bim with Bax occurs in cytosol, and then Bim-Bax complexes translocate to mitochondria. Complexes of either PUMA or Noxa with Bax or Bak were always detected at mitochondria. Overexpression of Bcl-xL or Mcl-1 delayed Bim/Bax translocation to mitochondria. These results reveal the ability of main BH3-only proteins to directly activate Bax and Bak in living cells and suggest that a complex network of interactions regulate the function of Bcl-2 family members during apoptosis.  相似文献   

9.
The novel anticancer drug ABT-737 is a Bcl-2 Homology 3 (BH3)-mimetic that induces apoptosis by inhibiting pro-survival Bcl-2 proteins. ABT-737 binds with equal affinity to Bcl-2, Bcl-xL and Bcl-w in vitro and is expected to overrule apoptosis resistance mediated by these Bcl-2 proteins in equal measure. We have profiled ABT-737 specificity for all six pro-survival Bcl-2 proteins, in p53 wild-type or p53-mutant human T-leukemic cells. Bcl-B was untargeted, like Bfl-1 and Mcl-1, in accord with their low affinity for ABT-737 in vitro. However, Bcl-2 proved a better ABT-737 target than Bcl-xL and Bcl-w. This was reflected in differential apoptosis-sensitivity to ABT-737 alone, or combined with etoposide. ABT-737 was not equally effective in displacing BH3-only proteins or Bax from Bcl-2, as compared with Bcl-xL or Bcl-w, offering an explanation for the differential ABT-737 sensitivity of tumor cells overexpressing these proteins. Inducible expression demonstrated that BH3-only proteins Noxa, but not Bim, Puma or truncated Bid could overrule ABT-737 resistance conferred by Bcl-B, Bfl-1 or Mcl-1. These data identify Bcl-B, Bfl-1 and Mcl-1, but also Bcl-xL and Bcl-w as potential mediators of ABT-737 resistance and indicate that target proteins can be differentially sensitive to BH3-mimetics, depending on the pro-apoptotic Bcl-2 proteins they are complexed with.  相似文献   

10.
Interactions between Bcl-2-like proteins and BH3 domains play a key role in the regulation of apoptosis. Despite the overall structural similarity of their interaction with helical BH3 domains, Bcl-2-like proteins exhibit an intricate spectrum of binding specificities whose underlying basis is not well understood. Here, we characterize these interactions using Rosetta FlexPepBind, a protocol for the prediction of peptide binding specificity that evaluates the binding potential of different peptides based on structural models of the corresponding peptide-receptor complexes. For two prominent players, Bcl-xL and Mcl-1, we obtain good agreement with a large set of experimental SPOT array measurements and recapitulate the binding specificity of peptides derived by yeast display in a previous study. We extend our approach to a third member of this family, Bcl-2: we test our blind prediction of the binding of 180 BIM-derived peptides with a corresponding experimental SPOT array. Both prediction and experiment reveal a Bcl-2 binding specificity pattern that resembles that of Bcl-xL. Finally, we extend this application to accurately predict the specificity pattern of additional human BH3-only derived peptides. This study characterizes the distinct patterns of binding specificity of BH3-only derived peptides for the Bcl-2 like proteins Bcl-xL, Mcl-1, and Bcl-2 and provides insight into the structural basis of determinants of specificity.  相似文献   

11.
12.
The pro-apoptotic members of the Bcl-2 family include initiator proteins that contain only BH3 domains and downstream effector multi-BH domain-containing proteins, including Bax and Bak. In this report, we compared the ability of the six human anti-apoptotic Bcl-2 family members to suppress apoptosis induced by overexpression of Bax or Bak, correlating findings with protein interactions measured by three different methods: co-immunoprecipitation, glutathione S-transferase pulldown, and fluorescence polarization assays employing synthetic BH3 peptides from Bax and Bak. Bcl-B and Mcl-1 showed strong preferences for binding to and suppression of Bax and Bak, respectively. In contrast, the other anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-X(L), Bcl-W, and Bfl-1) suppressed apoptosis induced by overexpression of either Bax or Bak, and they displayed an ability to bind both Bax and Bak by at least one of the three protein interaction methods. Interestingly, however, full-length Bax and Bak proteins and synthetic Bax and Bak BH3 peptides exhibited discernible differences in their interactions with some anti-apoptotic members of the Bcl-2 family, cautioning against reliance on a single method for detecting protein interactions of functional significance. Altogether, the findings reveal striking distinctions in the behaviors of Bcl-B and Mcl-1 relative to the other anti-apoptotic Bcl-2 family members, where Bcl-B and Mcl-1 display reciprocal abilities to bind and neutralize Bax and Bak.  相似文献   

13.
The Bcl-2 family of proteins are well-characterized regulators of the intrinsic apoptotic pathway. Proteins within this family can be classified as either prosurvival or prodeath members and the balance between them present at the mitochondrial membrane is what determines if the cell lives or dies. Specific interactions among Bcl-2 family proteins play a crucial role in regulating programmed cell death. Structural studies have established a conserved interaction pattern among Bcl-2 family members. This interaction is mediated by the binding of the hydrophobic face of the amphipathic α-helical BH3 domain into a conserved hydrophobic groove on the prosurvival partners. It has been reported that an increase in the helical content of BH3 mimetic peptides considerably improves the binding affinity. In this context, this work states for designing peptides derived from the BH3 domain of the proapoptotic protein Bak by substitution of some non-interacting residues by the helical inducing residue Aib. Different synthetic peptides preserving BakBH3 relevant interactions were proposed and simulated presenting a better predicted binding energy and higher helical content than the wild type Bak peptide.  相似文献   

14.
Evasion of apoptosis is recognized as a characteristic of malignant growth. Anti-apoptotic B-cell lymphoma-2 (Bcl-2) family members have therefore emerged as potential therapeutic targets due to their critical role in proliferating cancer cells. Here, we present the crystal structure of Bfl-1, the last anti-apoptotic Bcl-2 family member to be structurally characterized, in complex with a peptide corresponding to the BH3 region of the pro-apoptotic protein Bim. The structure reveals distinct features at the peptide-binding site, likely to define the binding specificity for pro-apoptotic proteins. Superposition of the Bfl-1:Bim complex with that of Mcl-1:Bim reveals a significant local plasticity of hydrophobic interactions contributed by the Bim peptide, likely to be the basis for the multi specificity of Bim for anti-apoptotic proteins.  相似文献   

15.
B-cell lymphoma 2 (Bcl-2) family proteins are the central regulators of apoptosis, functioning via mitochondrial outer membrane permeabilization. The family members are involved in several stages of apoptosis regulation. The overexpression of the anti-apoptotic proteins leads to several cancer pathological conditions. This overexpression is modulated or inhibited by heterodimerization of pro-apoptotic BH3 domain or BH3-only peptides to the hydrophobic groove present at the surface of anti-apoptotic proteins. Additionally, the heterodimerization displayed differences in binding affinity profile among the pro-apoptotic peptides binding to anti-apoptotic proteins. In light of discovering the novel peptide/drug molecules that contain the potential to inhibit specific anti-apoptotic protein, it is necessary to understand the molecular basis of recognition between the protein and its binding partner (peptide or ligand) along with its binding energies. Therefore, the present work focused on deciphering the molecular basis of recognition between pro-apoptotic Bak peptide binding to different anti-apoptotic (Bcl-xL, Bfl-1, Bcl-W, Mcl-1, and Bcl-2) proteins using advanced Molecular Dynamics (MD) approach such as Molecular Mechanics-Generalized Born Solvent Accessible. The results from our investigation revealed that the predicted binding free energies showed excellent correlation with the experimental values (r2 = .95). The electrostatic (ΔGele) contributions are the major component that drives the interaction between Bak peptides and different anti-apoptotic peptides. Additionally, van der Waals (ΔGvdw) energies also play an indispensible role in determining the binding free energy. Furthermore, the decomposition analysis highlighted the comprehensive information about the energy contributions of hotspot residues involved in stabilizing the interaction between Bak peptide and different anti-apoptotic proteins.  相似文献   

16.
We developed a new assay of Bcl-xL inhibitors based on fluorescence resonance energy transfer that occurs between an AEDANS-labeled Bak-BH3 peptide and three tryptophans in the BH1 and BH2 domains of Bcl-xL. The method can tolerate up to 5% DMSO, and it was validated with several Bcl-xL inhibitors. It can be adapted to screen for compounds targeting other Bcl-2 family proteins.  相似文献   

17.
Survival factors activate kinases which, in turn, phosphorylate the proapoptotic Bcl-xl/Bcl-2-associated death promoter homolog (BAD) protein at key serine residues. Phosphorylated BAD interacts with 14-3-3 proteins, and overexpression of 14-3-3 attenuates BAD-mediated apoptosis. Although BAD is known to interact with Bcl-2, Bcl-w, and Bcl-xL, the exact relationship between BAD and anti- or proapoptotic Bcl-2 proteins has not been analyzed systematically. Using the yeast two-hybrid protein interaction assay, we found that BAD interacted negligibly with proapoptotic Bcl-2 proteins. Even though wild type BAD only interacted with selected numbers of antiapoptotic proteins, underphosphorylated mutant BAD interacted with all antiapoptotic Bcl-2 proteins tested (Bcl-2, Bcl-w, Bcl-xL, Bfl-1/A1, Mcl-1, Ced-9, and BHRF-1). Using nonphosphorylated recombinant BAD expressed in bacteria, direct interactions between BAD and diverse antiapoptotic Bcl-2 members were also observed. Furthermore, apoptosis induced by BAD was blocked by coexpression with Bcl-2, Bcl-w, and Bfl-1. Comparison of BAD orthologs from zebrafish to human indicated the conservation of a 14-3-3 binding site and the BH3 domain during evolution. Thus, highly conserved BAD interacts with diverse antiapoptotic Bcl-2 members to regulate apoptosis.  相似文献   

18.
Migration and invasion of malignant cells are prerequisites for cancer progression and metastasis. The Bcl-2 family of proteins consists of about 25 members and has been extensively studied in the context of apoptosis. Despite the fact that small molecules targeting Bcl-2 proteins have already entered clinical trials, very few studies investigated a role of antiapoptotic Bcl-2 proteins beside cell death in the context of metastasis. The aim of this study was to dissect a potential role of the antiapoptotic Bcl-2 proteins Mcl-1, Bcl-2 and Bcl-xL on migration and invasion of colorectal cancer cells independent of their cell death control function. We used migration and invasion assays as well as three dimensional cell cultures to analyze colorectal cancer cell lines (HT29 and SW480) after siRNA mediated knockdown or overexpression of Mcl-1, Bcl-2 or Bcl-xL. We observed neither spontaneous cell death induction nor impaired proliferation of cells lacking Mcl-1, Bcl-2 or Bcl-xL. In contrast, knockdown of Mcl-1 led to increased proliferation. Strikingly, we demonstrate a profound impairment of both, migration and invasion, of colorectal cancer cells after Mcl-1, Bcl-2 or Bcl-xL knockdown. This phenotype was completely revised in cells overexpressing Mcl-1, Bcl-2 or Bcl-xL. The most pronounced effect among the investigated proteins was observed for Bcl-2. The data presented indicate a pivotal role of Mcl-1, Bcl-2 and Bcl-xL for migration and invasion of colorectal cancer cells independent of their known antiapoptotic effects. Thus, our study illustrates novel antitumoral mechanisms of Bcl-2 protein targeting.  相似文献   

19.
Unlike other antiapoptotic members of the Bcl-2 family, Bfl-1 does not contain a well defined C-terminal transmembrane domain, and whether the C-terminal tail of Bfl-1 functions as a membrane anchor is not yet clearly established. The molecular modeling study of the full-length Bfl-1 performed within this work suggests that Bfl-1 may co-exist in two distinct conformational states: one in which its C-terminal helix α9 is inserted in the hydrophobic groove formed by the BH1–3 domains of Bfl-1 and one with its C terminus. Parallel analysis of the subcellular localization of Bfl-1 indicates that even if Bfl-1 may co-exist in two distinct conformational states, most of the endogenous protein is tightly associated with the mitochondria by its C terminus in both healthy and apoptotic peripheral blood lymphocytes as well as in malignant B cell lines. However, the helix α9 of Bfl-1, and therefore the binding of Bfl-1 to mitochondria, is not absolutely required for the antiapoptotic activity of Bfl-1. A particular feature of Bfl-1 is the amphipathic character of its C-terminal helix α9. Our data clearly indicate that this property of helix α9 is required for the anchorage of Bfl-1 to the mitochondria but also regulates the antiapoptotic function Bfl-1.Apoptosis is a highly regulated process that plays a key role in maintaining cellular homeostasis, and a delicate balance between proapoptotic and antiapoptotic regulators of apoptosis pathways ensures the proper survival of cells in a variety of tissues. Imbalance between proapoptotic and antiapoptotic proteins occurs in diseases such as cancer, where an overexpression of antiapoptotic proteins endows cells with a selective survival advantage that promotes malignancy. Bcl-2 family members are essential regulators of the intrinsic apoptotic pathway, which act at the level of mitochondria as initiators of cell death (1). This family comprises nearly 20 proteins divided into three main groups. Antiapoptotic members such as Bcl-2, Bcl-xL, Bcl-w, Bfl-1, and Mcl-1 promote cell survival, whereas proapoptotic members such as Bax and Bak function as death effectors. The life and death balance is displaced in favor of cell death by proapoptotic BH3-only proteins such as Bim, Bad, Bid, Puma, and Noxa, which interact with antiapoptotic proteins and inactivate their function (2) or directly interact with and activate the Bax-like proteins (3).Distinct subcellular localizations of antiapoptotic members have been reported correlating with the accessibility of their C-terminal tail. The C-terminal tail of the antiapoptotic proteins Bcl-2, Bcl-xL, and Bcl-w possess a hydrophobic region known to be a membrane anchor domain. Thus, Bcl-2 localizes to mitochondria as well as to the endoplasmic reticulum and nuclear membranes (4, 5, 6), and deletion of its C-terminal amino acids abrogates its targeting to the outer mitochondrial membrane (7). In contrast, in healthy cells, Bcl-xL and Bcl-w localize mainly in the cytosol because their C-terminal tails are sequestered. Bcl-xL exists as a homodimer through the exchange of the C-terminal tail bound in the hydrophobic groove of the reciprocal dimer partner (8), whereas the C-terminal tail of Bcl-w occupies its own hydrophobic groove in the monomer form (9, 10). It has been proposed that, following apoptotic stimuli, interaction of the BH3 domain from BH3-only proteins with the hydrophobic groove of Bcl-w or Bcl-xL liberates their C-terminal tail and then the two proteins translocate to the mitochondria (8, 11).Unlike Bcl-2, Bcl-xL, and Bcl-w, Bfl-1 and its murine homolog, A1, do not contain a well defined C-terminal transmembrane domain (12, 13). C-terminal ends of these two proteins are similar and contain several hydrophilic residues that interrupt their putative transmembrane hydrophobic domain. Whether the C-terminal tail of Bfl-1 functions as a membrane anchor remains to be clarified. Immunofluorescence analyses in an earlier study have shown that overexpressed human Bfl-1 is predominantly localized in the endoplasmic/nuclear envelope regions (14). Then, recent independent studies, with Bfl-1-overexpressing cells, suggested that Bfl-1 localizes to the mitochondria (15, 16, 17) and that the C-terminal end of Bfl-1 is important for anchoring Bfl-1 to the mitochondria due to GFP-Bfl-1 being associated to the mitochondria, whereas GFP-Bfl-1, devoid of its C-terminal tail, also localizes in the cytosol (16, 18). However, localization of endogenous Bfl-1 has never been investigated. In this study, we present a molecular modeling study of full-length Bfl-1 (FL-Bfl-1), based on the crystal structure of a truncated form of Bfl-1 (residues 1–149) in complex with the BIM-BH3 peptide (Protein Data Bank code 2VM6).4 Our model suggests that Bfl-1 may co-exist in two distinct conformational states, the first one with its C-terminal helix α9 (residues 155–175) inserted in the hydrophobic groove formed by the BH1–3 domain of Bfl-1, and the second one with its C-terminal tail. Interestingly, helical wheel projection of the C-terminal helix of Bfl-1 highlights its amphipathic character, a feature of transmembrane helices or membrane anchors. These observations incited the reinvestigation of the subcellular localization of Bfl-1 in both malignant B cell lines and peripheral blood lymphocytes (PBLs).5 We demonstrate here that endogenous Bfl-1 is preferentially anchored to the mitochondria in malignant B cell lines but also in healthy PBLs. Moreover, we show that both the anchorage of Bfl-1 to the mitochondria and the anti-apoptotic function of the protein are dependent on the amphipathic nature of the C-terminal helix.  相似文献   

20.
Inhibition of the interaction between the p53 tumor suppressor and its negative regulator MDM2 is of great importance to cancer therapy. The anti-apoptotic Bcl-2 family proteins are also attractive anti-cancer molecular targets, as they are key regulators of apoptotic cell death. Previously, we reported the interactions between the p53 transactivation domain (p53TAD) and diverse members of the anti-apoptotic Bcl-2 family proteins. In this study, we investigated the binding of MDM2-inhibiting p53TAD peptide analogues, p53-MDM2/MDMX inhibitor (PMI) and pDI, with anti-apoptotic Bcl-2 family proteins, Bcl-XL and Bcl-2, by using NMR spectroscopy. The NMR chemical shift perturbation data demonstrated the direct binding of the p53 peptide analogues to Bcl-XL and Bcl-2 and showed that the PMI and pDI peptides bind to a conserved hydrophobic groove of the anti-apoptotic Bcl-2 family proteins. Furthermore, the structural model of the Bcl-XL/PMI peptide complex showed that the binding mode of the PMI peptide is highly similar to that of pro-apoptotic Bcl-2 homology 3 (BH3) peptides. Finally, our structural comparison provided a molecular basis for how the same PMI peptide can bind to two distinct anti-cancer target proteins Bcl-XL and MDM2, which may have potential applications for multi-targeting cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号