首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interindividual variability in the response of plasma triglyceride concentrations (TG) following fish oil consumption has been observed. Our objective was to examine the associations between single-nucleotide polymorphisms (SNPs) within genes encoding proteins involved in de novo lipogenesis and the relative change in plasma TG levels following a fish oil supplementation. Two hundred and eight participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9–2.2 g eicosapentaenoic acid and 1.1 g docosahexaenoic acid. SNPs within SREBF1, ACLY, and ACACA genes were genotyped using TAQMAN methodology. After correction for multiple comparison, only two SNPs, rs8071753 (ACLY) and rs1714987 (ACACA), were associated with the relative change in plasma TG concentrations (P = 0.004 and P = 0.005, respectively). These two SNPs explained 7.73% of the variance in plasma TG relative change following fish oil consumption. Genotype frequencies of rs8071753 according to the TG response groups (responders versus nonresponders) were different (P = 0.02). We conclude that the presence of certain SNPs within genes, such as ACLY and ACACA, encoding proteins involved in de novo lipogenesis seem to influence the plasma TG response following fish oil consumption.  相似文献   

3.
n-3 Polyunsaturated fatty acids (n-3 PUFAs) have anti-obesity effects that may modulate risk of obesity, in part, through interactions with genetic factors. Genome-wide association studies (GWAS) have identified genetic variants associated with body mass index (BMI); however, the extent to which these variants influence adiposity through interactions with n-3 PUFAs remains unknown. We evaluated 10 highly replicated obesity GWAS single nucleotide polymorphisms (SNPs) for individual and cumulative associations with adiposity phenotypes in a cross-sectional sample of Yup’ik people (n = 1,073) and evaluated whether genetic associations with obesity were modulated by n-3 PUFA intake. A genetic risk score (GRS) was calculated by adding the BMI-increasing alleles across all 10 SNPs. Dietary intake of n-3 PUFAs was estimated using nitrogen stable isotope ratio (δ15N) of red blood cells, and genotype–phenotype analyses were tested in linear models accounting for familial correlations. GRS was positively associated with BMI (p = 0.012), PBF (p = 0.022), ThC (p = 0.025), and waist circumference (p = 0.038). The variance in adiposity phenotypes explained by the GRS included BMI (0.7 %), PBF (0.3 %), ThC (0.7 %), and WC (0.5 %). GRS interactions with n-3 PUFAs modified the association with adiposity and accounted for more than twice the phenotypic variation (~1–2 %), relative to GRS associations alone. Obesity GWAS SNPs contribute to adiposity in this study population of Yup’ik people and interactions with n-3 PUFA intake potentiated the risk of fat accumulation among individuals with high obesity GRS. These data suggest the anti-obesity effects of n-3 PUFAs among Yup’ik people may, in part, be dependent upon an individual’s genetic predisposition to obesity.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-013-0340-z) contains supplementary material, which is available to authorized users.  相似文献   

4.
Polymorphisms (SNPs) within the FADS gene cluster and the ELOVL gene family are believed to influence enzyme activities after an omega-3 (n-3) fatty acid (FA) supplementation. The objectives of the study are to test whether an n-3 supplementation is associated with indexes of desaturase and elongase activities in addition to verify whether SNPs in the FADS gene cluster and the ELOVL gene family modulate enzyme activities of desaturases and elongases. A total 208 subjects completed a 6-week supplementation period with 5 g/day of fish oil (1.9–2.2 g/day of EPA + 1.1 g/day of DHA). FA profiles of plasma phospholipids were obtained by gas chromatography (n = 210). Desaturase and elongase indexes were estimated using product-to-precursor ratios. Twenty-eight SNPs from FADS1, FADS2, FADS3, ELOVL2 and ELOVL5 were genotyped using TaqMan technology. Desaturase indexes were significantly different after the 6-week n-3 supplementation. The index of δ-5 desaturase activity increased by 25.7 ± 28.8 % (p < 0.0001), whereas the index of δ-6 desaturase activity decreased by 17.7 ± 18.2 % (p < 0.0001) post-supplementation. Index of elongase activity decreased by 39.5 ± 27.9 % (p < 0.0001). Some gene–diet interactions potentially modulating the enzyme activities of desaturases and elongases involved in the FA metabolism post-supplementation were found. SNPs within the FADS gene cluster and the ELOVL gene family may play an important role in the enzyme activity of desaturases and elongases, suggesting that an n-3 FAs supplementation may affect PUFA metabolism.  相似文献   

5.
A large inter-individual variability in the plasma triglyceride (TG) response to fish oil consumption has been observed. The objective was to investigate the gene–diet interaction effects between single-nucleotide polymorphisms (SNPs) within glucokinase (GCK) gene and dietary carbohydrate intakes (CHO) on the plasma TG response to a fish oil supplementation. Two hundred and eight participants were recruited in the greater Quebec City area. The participants completed a 6-week fish oil supplementation (5 g fish oil/day: 1.9–2.2 g EPA and 1.1 g DHA). Thirteen SNPs within GCK gene were genotyped using TAQMAN methodology. A gene–diet interaction effect on the plasma TG response was observed with rs741038 and CHO adjusted for age, sex and BMI (p = 0.008). In order to compare the plasma TG response between genotypes according to CHO, participants were divided according to median CHO. Homozygotes of the minor C allele of rs741038 with high CHO >48.59 % had a greater decrease in their plasma TG concentrations following the intake of fish oil (p < 0.05) than C/C homozygotes with low CHO and also than the other genotypes either with high or low CHO. The plasma TG response to a fish oil supplementation may be modulated by gene–diet interaction effects involving GCK gene and CHO.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0395-5) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
The n-3 polyunsaturated fatty acids (PUFAs), EPA and DHA, as well as estrogen have been shown to decrease circulating levels of triglyceride (TG), but their underlying mode of action is unclear. The purpose of this study was to determine the effects of n-3 PUFA consumption and estrogen injection on TG metabolism. Rats (n = 48) were fed a modified AIN-93G diet with 0, 1, or 2 % EPA + DHA relative to the total energy intake during 12 weeks. At 8 weeks, rats were ovariectomized (OVX), and after a 1-week recovery, rats were injected with either 17β-estradiol-3-benzoate (E2) or corn oil for the last 3 weeks. The n-3 PUFA consumption and E2 injection independently decreased the hepatic expressions of sterol regulatory element-binding protein 1, acetyl-CoA carboxylase 1, fatty acid synthase (FAS), and diacylglycerol acyltransferase 2 (DGAT2) (P < 0.05). There were interactions between n-3 PUFA consumption and E2 injection on hepatic expression of FAS and DGAT2. In addition, n-3 PUFA consumption and E2 injection up-regulated the expression of AMP-activated protein kinase (AMPK), phosphorylated AMPK, peroxisomal proliferator-activated receptor α, and carnitine palmitoyltransferase 1 in liver and skeletal muscle. E2 injection increased the expression of estrogen receptor α and β in skeletal muscle and liver, but n-3 PUFA consumption increased the expression of both receptors only in skeletal muscle. The present study suggests that the hypotriglyceridemic effects of n-3 PUFA consumption and E2 injection could be due to the down-regulation of hepatic TG synthesis and up-regulation of TG oxidation in liver and skeletal muscle in OVX rats.  相似文献   

8.

Objective

Nucleotides (NTs) have been added to infant formulas for several years due to their health benefits. However, studies have reported inconsistent findings regarding the association between NTs and fatty acid (FA) composition. A meta-analysis was performed to assess the effects of NTs supplementation of infant formula on erythrocyte and plasma FA composition.

Methods

Randomized controlled trials that evaluated the association between NTs supplementation and FA composition and were published before October 2014 were included. Standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated. Heterogeneity was assessed using Q and I 2 tests.

Results

Eight studies (364 infants) were included in the meta-analysis. NTs supplementation did not affect the concentrations of total saturated FAs (SMD= 0.05; 95% CI= -0.23–0.32; P = 0.75) or total monounsaturated FAs (SMD= -0.01; 95% CI= -0.28–0.27; P = 0.95) in erythrocyte membranes. Erythrocyte total n-3 (SMD= 0.15; 95% CI= -0.11–0.41; P = 0.27) and n-6 PUFA (SMD= -0.16; 95% CI= -0.42–0.10, P = 0.22) concentrations did not increase with NTs supplementation. The concentrations of erythrocyte n-3 PUFA (18:3, 20:5, 22:5, and 22:6) and n-6 PUFA (18:2, 20:3, 20:4, and 22:4) were not affected by NTs supplementation. NTs significantly increased plasma concentrations of 18:2 n-6 (SMD= 0.90; 95% CI= 0.47–1.33; P < 0.0001), 20:3 n-6 (SMD= 0.56; 95% CI= 0.14–0.97; P = 0.009), and 20:4 n-6 PUFA (SMD= 0.92; 95% CI= 0.50–1.35; P < 0.0001), and significantly decreased the concentration of plasma 18:3 n-3 PUFA (SMD= -0.60; 95% CI -1.12 to -0.09; P = 0.02). No effect was obtained on plasma 20:2 n-6 PUFA concentrations (SMD= 0.06; 95 % CI, -1.03 to -0.2; P = 0.93).

Conclusions

Our meta-analysis revealed that NTs supplementation significantly increased plasma 18:2 n-6, 20:3 n-6, and 20:4 n-6 PUFA concentrations in infants, but did not affect erythrocyte FA composition.  相似文献   

9.
Inconsistent effects of fish oil supplementation on plasma lipids may be influenced by genetic variation. We investigated 12 single nucleotide polymorphisms (SNPs) associated with dyslipidaemia in genome-wide association studies, in 310 participants randomised to treatment with placebo or 0.45, 0.9 and 1.8 g/day eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA) (1.51:1) in a 12-month parallel controlled trial. Effects of risk alleles were assessed as trait-specific genetic predisposition scores (GPS) and singly. GPS were positively associated with baseline concentrations of plasma total cholesterol, low-density-lipoprotein cholesterol and triglyceride (TG) and negatively with high-density-lipoprotein cholesterol. The TG-GPS was associated with 0.210 mmol/L higher TG per risk allele (P < 0.0001), but no effects of single TG SNPs were significant at baseline. After treatment with EPA and DHA, TG-GPS was associated with 0.023 mmol/L lower TG per risk allele (P = 0.72). No interactions between GPS and treatment were significant; however, FADS1 SNP rs174546 C/T interaction with treatment was a significant determinant of plasma TG concentration (P = 0.047, n = 267). Concentration differed between genotype groups after the 1.8 g/day dose (P = 0.026), decreasing by 3.5 (95 % CI −15.1 to 8.2) % in non-carriers of the risk T-allele (n = 30) and by 21.6 (95 % CI −32.1 to −11.2) % in carriers (n = 37), who showed a highly significant difference between treatments (P = 0.007). Carriers of the FADS1 rs174546 risk allele could benefit from a high intake of EPA and DHA in normalising plasma TG.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0412-8) contains supplementary material, which is available to authorized users.  相似文献   

10.
Recent genome-wide association studies have identified multiple loci robustly associated with plasma lipids, which also contribute to extreme lipid phenotypes. However, these common genetic variants explain <12% of variation in lipid traits. Adiposity is also an important determinant of plasma lipoproteins, particularly plasma TGs and HDL cholesterol (HDLc) concentrations. Thus, interactions between genes and clinical phenotypes may contribute to this unexplained heritability. We have applied a weighted genetic risk score (GRS) for both plasma TGs and HDLc in two large cohorts at the extremes of BMI. Both BMI and GRS were strongly associated with these lipid traits. A significant interaction between obese/lean status and GRS was noted for each of TG (PInteraction = 2.87 × 10−4) and HDLc (PInteraction = 1.05 × 10−3). These interactions were largely driven by SNPs tagging APOA5, glucokinase receptor (GCKR), and LPL for TG, and cholesteryl ester transfer protein (CETP), GalNAc-transferase (GALNT2), endothelial lipase (LIPG), and phospholipid transfer protein (PLTP) for HDLc. In contrast, the GRSLDL cholesterol × adiposity interaction was not significant. Sexual dimorphism was evident for the GRSHDL on HDLc in obese (PInteraction = 0.016) but not lean subjects. SNP by BMI interactions may provide biological insight into specific genetic associations and missing heritability.  相似文献   

11.
Fish oil supplementation provides an inconsistent degree of protection from cardiovascular disease (CVD), which may be attributed to genetic variation. Single nucleotide polymorphisms (SNPs) in the elongation-of-very-long-chain-fatty-acids-2 (ELOVL2) gene have been strongly associated with plasma proportions of n-3 long-chain polyunsaturated fatty acids (LC-PUFA). We investigated the effect of genotype interaction with fish oil dosage on plasma n-3 LC-PUFA proportions in a parallel double-blind controlled trial, involving 367 subjects randomised to treatment with 0.45, 0.9 and 1.8 g/day eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (1.51:1) or olive oil placebo for 6 months. We genotyped 310 subjects for ELOVL2 gene SNPs rs3734398, rs2236212 and rs953413. At baseline, carriers of all minor alleles had lower proportions of plasma DHA than non-carriers (P = 0.021–0.030). Interaction between genotype and treatment was a significant determinant of plasma EPA (P < 0.0001) and DHA (P = 0.004–0.032). After the 1.8 g/day dose, carriers of ELOVL2 SNP minor alleles had approximately 30 % higher proportions of EPA (P = 0.002–0.004) and 9 % higher DHA (P = 0.013–0.017) than non-carriers. Minor allele carriers could therefore particularly benefit from a high intake of EPA and DHA in maintaining high levels of plasma n-3 PUFA conducive to protection from CVD.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-013-0362-6) contains supplementary material, which is available to authorized users.  相似文献   

12.
Fish oil supplementation provides an inconsistent degree of protection from cardiovascular disease (CVD), which may be attributed to genetic variation. Single nucleotide polymorphisms (SNPs) in the elongation-of-very-long-chain-fatty-acids-2 (ELOVL2) gene have been strongly associated with plasma proportions of n-3 long-chain polyunsaturated fatty acids (LC-PUFA). We investigated the effect of genotype interaction with fish oil dosage on plasma n-3 LC-PUFA proportions in a parallel double-blind controlled trial, involving 367 subjects randomised to treatment with 0.45, 0.9 and 1.8 g/day eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (1.51:1) or olive oil placebo for 6 months. We genotyped 310 subjects for ELOVL2 gene SNPs rs3734398, rs2236212 and rs953413. At baseline, carriers of all minor alleles had lower proportions of plasma DHA than non-carriers (P = 0.021–0.030). Interaction between genotype and treatment was a significant determinant of plasma EPA (P < 0.0001) and DHA (P = 0.004–0.032). After the 1.8 g/day dose, carriers of ELOVL2 SNP minor alleles had approximately 30 % higher proportions of EPA (P = 0.002–0.004) and 9 % higher DHA (P = 0.013–0.017) than non-carriers. Minor allele carriers could therefore particularly benefit from a high intake of EPA and DHA in maintaining high levels of plasma n-3 PUFA conducive to protection from CVD.  相似文献   

13.
n-3 polyunsaturated fatty acids (PUFA) can affect several monocyte functions and the biochemistry of blood cells, thus possibly influencing the initiation of thrombosis, inflammatory disease and atherosclerosis. In this study, we have investigated the effect of dietary supplementation with n-3 PUFA ethyl esters on procoagulant activity (PCA) and interleukin-6 (IL-6) production by human mononuclear cells. Nine healthy volunteers received 4 g/d of n-3 PUFA ethyl esters (4 × 1 g capsules with at least 85% eicosapentaenoic + docosahexaenoic acid ethyl esters) for 18 weeks. Before and at the end of the treatment, mononuclear cells were obtained from peripheral citrated blood by Ficoll-Hypaque density gradient centrifugation. Cellular suspensions (107 cells/ml) were incubated at 37°C for 4 h in the absence and presence of lipopolysaccharide (10 μg/ml); PCA was determined by one-stage clotting assay and IL-6 concentrations were assayed in supernatants by specific ELISA. After 18-week treatment, both unstimulated and stimulated monocyte PCA were significantly reduced by 66% and 63%, respectively (P < 0.01). Similarly, a significant inhibitory effect by n-3 PUFA treatment on basal and LPS-stimulated IL-6 monocyte production was observed (50% and 46%, respectively, P < 0.05). These data indicate that 18-week n-3 PUFA supplementation may influence monocyte activities, which play a specific role in atherosclerosis and its thrombotic complications.  相似文献   

14.
The aim of this study was to study the effect of adding polyunsaturated fatty acid (PUFA) n-3 or placebo (containing oleic acid) to a combined statin-fibrate treatment on plasma lipoproteins, lipoperoxidation, glucose homeostasis, total homocysteine (tHcy) and microalbuminuria (MA) in patients with diabetic dyslipidemia (DDL). Twenty-four patients, who did not fulfill the recommended target lipid values with combined hypolipidemic therapy (pravastatin 20 mg+micronized fenofibrate 200 mg daily), were supplemented with 3.6 g PUFA n-3 daily for 3 months or placebo (olive oil) for the next 3 months. The concentrations of plasma lipids, fatty acid (FA) profiles of phosphatidylcholine (PC), cholesteryl esters (CE) and triglycerides (TG), tHcy levels, concentrations of conjugated dienes (CD) in low-density lipoprotein (LDL), and MA were determined in baseline state, after the PUFA n-3 and placebo treatment period. Supplementation with PUFA n-3 led to a significant decrease in plasma tHcy (-29%, P < .01) and TG (-28%, P < .05) levels, as well as to a significant decrease in MA (-24%, P < .05). The decrease in MA correlated significantly with the increase in total PUFA n-3 (r = -.509, P < or = .05) and docosahexaenoic acid (r = -.52, P < .01) in TG. The concentrations of CD in LDL increased significantly (+15%, P < .05). The supplementation with PUFA n-3 to the combined statin-fibrate treatment in patients with DDL decreased the TG and tHcy levels as well as MA. It could lead to decreased risk of atherothrombosis and delay of diabetic nephropathy onset and progression.  相似文献   

15.
Genetic variability in the FADS1-FADS2 gene cluster [encoding delta-5 (D5D) and delta-6 (D6D) desaturases] has been associated with plasma long-chain PUFA (LCPUFA) and lipid levels in adults. To better understand these relationships, we further characterized the association between FADS1-FADS2 genetic variability and D5D and D6D activities in adolescents. Thirteen single nucleotide polymorphisms (SNPs) were genotyped in 1,144 European adolescents (mean ± SD age: 14.7 ± 1.4 y). Serum phospholipid fatty acid levels were analyzed using gas chromatography. D5D and D6D activities were estimated from the C20:4n-6/C20:3n-6 and C20:3n-6/C18:2n-6 ratios, respectively. Minor alleles of nine SNPs were associated with higher 18:2n-6 levels (1.9E-18 ≤ P ≤ 6.1E-5), lower C20:4n-6 levels (7.1E-69 ≤ P ≤ 1.2E-12), and lower D5D activity (7.2E-44 ≤ P ≤ 4.4E-5). All haplotypes carrying the rs174546 minor allele were associated with lower D5D activity, suggesting that this SNP is in linkage disequilibrium with a functional SNP within FADS1. In contrast, only the rs968567 minor allele was associated with higher D6D activity (P = 1.5E-6). This finding agrees with an earlier in vitro study showing that the minor allele of rs968567 is associated with a higher FADS2 promoter activity. These results suggest that rare alleles of several SNPs in the FADS gene cluster are associated with higher D6D activity and lower D5D activity in European adolescents.  相似文献   

16.
Elevated plasma triglyceride (TG) levels are an established risk factor for type-2 diabetes (T2D). However, recent studies have hinted at the possibility that genetic risk for TG may paradoxically protect against T2D. In this study, we examined the association of genetic risk for TG with incident T2D, and the interaction of baseline TG with TG genetic risk on incident T2D in 13,247 European-Americans (EA) and 3,238 African-Americans (AA) from three prospective cohort studies. A TG genetic risk score (GRS) was calculated based on 31 validated single nucleotide polymorphisms (SNPs). We considered several baseline covariates, including body- mass index (BMI) and lipid traits. Among EA and AA, we find, as expected, that baseline levels of TG are strongly positively associated with incident T2D (p<2 x 10-10). However, the TG GRS is negatively associated with T2D (p=0.013), upon adjusting for only race, in the full dataset. Upon additionally adjusting for age, sex, BMI, high-density lipoprotein cholesterol and TG, the TG GRS is significantly and negatively associated with T2D incidence (p=7.0 x 10-8), with similar trends among both EA and AA. No single SNP appears to be driving this association. We also find a significant statistical interaction of the TG GRS with TG (pinteraction=3.3 x 10-4), whereby the association of TG with incident T2D is strongest among those with low genetic risk for TG. Further research is needed to understand the likely pleiotropic mechanisms underlying these findings, and to clarify the causal relationship between T2D and TG.  相似文献   

17.

Background

Neighboring genes PIK3CA and KCNMB3 are both important for insulin signaling and β-cell function, but their associations with glucose-related traits are unclear.

Objective

The objective was to examine associations of PIK3CA-KCNMB3 variants with glucose-related traits and potential interaction with dietary fat.

Design

We first investigated genetic associations and their modulation by dietary fat in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study (n = 820). Nine single-nucleotide polymorphisms (SNPs) were selected for analysis, covering more than 80% of the SNPs in the region. We then sought to replicate the findings in the Boston Puerto Rican Health Study (BPRHS) (n = 844).

Results

For KCNMB3 missense mutation rs7645550, meta-analysis indicated that homeostasis model assessment of insulin resistance (HOMA-IR) was significantly lower in minor allele T homozygotes compared with major allele C carriers (pooled P-value = 0.004); for another SNP rs1183319, which is in moderate LD with rs7645550, minor allele G carriers had higher HOMA-IR compared with non-carriers in both populations (pooled P-value = 0.028). In GOLDN, rs7645550 T allele homozygotes had lower HOMA-IR only when dietary n-3: n-6 PUFA ratio was low (≤0.11, P = 0.001), but not when it was high (>0.11, P-interaction = 0.033). Similar interaction was observed between rs1183319 and n-3: n-6 PUFA ratio on HOMA-IR (P-interaction = 0.001) in GOLDN. Variance contribution analyses in GOLDN confirmed the genetic association and gene-diet interaction. In BPRHS, dietary n-3: n-6 PUFA ratio significantly modulated the association between rs1183319 and HbA1c (P-interaction = 0.034).

Conclusion

PIK3CA-KCNMB3 variants are associated with insulin resistance in populations of different ancestries, and are modified by dietary PUFA.  相似文献   

18.
19.

Background

Age at natural menopause (ANM) is a complex trait with high heritability and is associated with several major hormonal-related diseases. Recently, several genome-wide association studies (GWAS), conducted exclusively among women of European ancestry, have discovered dozens of genetic loci influencing ANM. No study has been conducted to evaluate whether these findings can be generalized to Chinese women.

Methodology/Principal Findings

We evaluated the index single nucleotide polymorphisms (SNPs) in 19 GWAS-identified genetic susceptibility loci for ANM among 3,533 Chinese women who had natural menopause. We also investigated 3 additional SNPs which were in LD with the index SNP in European-ancestry but not in Asian-ancestry populations. Two genetic risk scores (GRS) were calculated to summarize SNPs across multiple loci one for all SNPs tested (GRSall), and one for SNPs which showed association in our study (GRSsel). All 22 SNPs showed the same association direction as previously reported. Eight SNPs were nominally statistically significant with P≤0.05: rs4246511 (RHBDL2), rs12461110 (NLRP11), rs2307449 (POLG), rs12611091 (BRSK1), rs1172822 (BRSK1), rs365132 (UIMC1), rs2720044 (ASH2L), and rs7246479 (TMEM150B). Especially, SNPs rs4246511, rs365132, rs1172822, and rs7246479 remained significant even after Bonferroni correction. Significant associations were observed for GRS. Women in the highest quartile began menopause 0.7 years (P = 3.24×10−9) and 0.9 years (P = 4.61×10−11) later than those in the lowest quartile for GRSsel and GRSall, respectively.

Conclusions

Among the 22 investigated SNPs, eight showed associations with ANM (P<0.05) in our Chinese population. Results from this study extend some recent GWAS findings to the Asian-ancestry population and may guide future efforts to identify genetic determination of menopause.  相似文献   

20.
The aim of this study was to assess baseline levels and changes in plasma fatty acid profiles in children and adolescents with ADHD, in a placebo-controlled study with Omega 3/6 supplementation, and to compare with treatment response. Seventy-five children and adolescents aged 8?C18?years with DSM-IV ADHD were randomized to 3?months of Omega 3/6 (Equazen eye q) or placebo, followed by 3?months of open phase Omega 3/6 for all. n-3, n-6, n-6/n-3 ratio, EPA and DHA in plasma were measured at baseline, 3 and 6?months. Subjects with more than 25?% reduction in ADHD symptoms were classified as responders. At baseline, no significant differences in mean fatty acid levels were seen across active/placebo groups or responder/non-responder groups. The 0?C3?month changes in all parameters were significantly greater in the active group (p?<?0.01). Compared to non-responders, the 6-month responders had significantly greater n-3 increase at 3?months and decrease in n-6/n-3 ratio at 3 and 6?months (p?<?0.05). Omega 3/6 supplementation had a clear impact on fatty acid composition of plasma phosphatidyl choline in active versus placebo group, and the fatty acid changes appear to be associated with treatment response. The most pronounced and long-lasting changes for treatment responders compared to non-responders were in the n-6/n-3 ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号