首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the importance of predator recognition in mediating predator-prey interactions, we know little about the specific characteristics that prey use to distinguish predators from non-predators. Recent experiments indicate that some prey who do not innately recognize specific predators as threats have the ability to display antipredator responses upon their first encounter with those predators if they are similar to predators that the prey has recently learned to recognize. The purpose of our present experiment is to test whether this generalization of predator recognition is dependent on the level of risk associated with the known predator. We conditioned fathead minnows to chemically recognize brown trout either as a high or low threat and then tested the minnows for their responses to brown trout, rainbow trout (closely related predator) or yellow perch (distantly related predator). When the brown trout represents a high-risk predator, minnows show an antipredator response to the odour of brown trout and rainbow trout but not to yellow perch. However, when the brown trout represents a low-risk predator, minnows display antipredator responses to brown trout, but not to the rainbow trout or yellow perch. We discuss these results in the context of the Predator Recognition Continuum Hypothesis.  相似文献   

2.
While some prey species possess an innate recognition of their predators, others require learning to recognize their predators. The specific characteristics of the predators that prey learn and whether prey can generalize this learning to similar predatory threats have been virtually ignored. Here, we investigated whether fathead minnows that learned to chemically recognize a specific predator species as a threat has the ability to generalize their recognition to closely related predators. We found that minnows trained to recognize the odour of a lake trout as a threat (the reference predator) generalized their responses to brook trout (same genus as lake trout) and rainbow trout (same family), but did not generalize to a distantly related predatory pike or non-predatory suckers. We also found that the intensity of antipredator responses to the other species was correlated with the phylogenetic distance to the reference predator; minnows responded with a higher intensity response to brook trout than rainbow trout. This is the first study showing that prey have the ability to exhibit generalization of predator odour recognition. We discuss these results and provide a theoretical framework for future studies of generalization of predator recognition.  相似文献   

3.
Hundreds of studies have investigated the sources and nature of information that prey gather about their predators and the ways in which prey use this information to mediate their risk of predation. However, relatively little theoretical or empirical work has considered the question of how long information should be maintained and used by prey animals in making behavioural decisions. Here, we tested whether the size of the memory window associated with predator recognition could be affected by an intrinsic factor, such as size and growth rate of the prey. We maintained groups of predator-naive woodfrog, Lithobates sylvaticus, tadpoles at different temperatures for 8 days to induce differences in tadpole size. We then conditioned small and large tadpoles to recognize the odour of a predatory tiger salamander, Ambystoma tigrinum. Tadpoles were then maintained either on a high or low growth trajectory for another 8 days, after which they were tested for their response to the predator. Our results suggest that the memory window related to predator recognition of tadpoles is determined by both their size and/or growth rate at the time of learning and their subsequent growth rate post-learning.  相似文献   

4.
The ability of prey to observe and learn to recognize potential predators from the behaviour of nearby individuals can dramatically increase survival and, not surprisingly, is widespread across animal taxa. A range of sensory modalities are available for this learning, with visual and chemical cues being well-established modes of transmission in aquatic systems. The use of other sensory cues in mediating social learning in fishes, including mechano-sensory cues, remains unexplored. Here, we examine the role of different sensory cues in social learning of predator recognition, using juvenile damselfish (Amphiprion percula). Specifically, we show that a predator-naive observer can socially learn to recognize a novel predator when paired with a predator-experienced conspecific in total darkness. Furthermore, this study demonstrates that when threatened, individuals release chemical cues (known as disturbance cues) into the water. These cues induce an anti-predator response in nearby individuals; however, they do not facilitate learnt recognition of the predator. As such, another sensory modality, probably mechano-sensory in origin, is responsible for information transfer in the dark. This study highlights the diversity of sensory cues used by coral reef fishes in a social learning context.  相似文献   

5.
Recent anthropogenic activities have caused a considerable change in the turbidity of freshwater and marine ecosystems. Concomitant with such perturbations are changes in community composition. Understanding the mechanisms through which species interactions are influenced by anthropogenic change has come to the forefront of many ecological disciplines. Here, we examine how a change in the availability of visual information influences the behavior of prey fish exposed to potential predators and non‐predators. When fathead minnows, Pimephales promelas, were conditioned to recognize predators and non‐predators in clear water, they showed a highly sophisticated ability to distinguish predators from non‐predators. However, when learning occurred under conditions of increased turbidity, the ability of the prey to learn and generalize recognition of predators and non‐predators was severely impaired. Our work highlights that changes at the community level associated with anthropogenic perturbations may be mediated through altered trophic interactions, and highlights the need to closely examine behavioral interactions to understand how species interactions change.  相似文献   

6.
For prey species that rely on learning to recognize their predators, natural selection should favour individuals able to learn as early as possible. The earliest point at which individuals can gather information about the identity of their potential predators is during the embryonic stage. Indeed, recent experiments have demonstrated that amphibians can learn to recognize predators prior to hatching. Here, we conditioned woodfrog embryos to recognize predatory salamander cues either in the morning or in the evening, and subsequently exposed the two-week-old tadpoles to salamander cues either in the morning or in the evening, and recorded the intensity of their antipredator behaviour. The data indicate that amphibians learn to recognize potential predators while still in the egg, and also learn the temporal component of this information, which they use later in life, to adjust the intensity of their antipredator responses throughout the day.  相似文献   

7.
对捕食者的认知能力是当前生态学研究的一个热点。一些物种具有对捕食者先天的识别能力,而一些物种必须通过后天学习才能获得对捕食者的认知能力,还有许多动物通过社会学习和文化传播获得对捕食者的识别能力。本文就国外被捕食动物对捕食者的识别的研究进展进行综述,并讨论了该项研究对野外放归工作提供的重要理论意义和应用价值。  相似文献   

8.
Understanding the factors and mechanisms that affect the impacts of invasive species in invaded environments has been widely debated among researchers. However, few studies about invasive species have explored the effects of predation risks by native predators on exotic prey. Herein, the traditional invasive predator-native prey framework was reversed. We tested if tadpoles, of the worldwide invasive American Bullfrog Lithobates catesbeianus, were affected by the predation risk imposed by native predators. We used two different species of belostomatid predators and tested whether and how predation-induced phenotypic plasticity on L. catesbeianus reverberated in morphological, physiological, and ecosystem-level processes. Individuals of L. catesbeianus modified their morphological (tail muscle width), behavioral (activity and foraging), and physiological (growth and growth efficiency) traits in the presence of predation risk. Based on the observed morphological changes, our results suggest that prey may recognize predator-specific cues. In addition, we observed that L. catesbeianus' responses to predation risk can affect ecosystem-level properties, by inducing trophic cascades and reducing animal-mediated nutrient recycling rates. In summary, our study supports that exotic prey species who are subjected to native predators may display anti-predator responses, with implications for their development, as well as possible ecosystem-level effects.  相似文献   

9.
Exposure to elevated levels of background predation risk is known to shape the behavioural response of prey organisms to known and unknown predation threats. However, less is known regarding the effects of background predation risk on predator recognition learning. Here, we test the potential effects of elevated background predation risk on the strength and retention of learned predator recognition in juvenile convict cichlids (Amatitlania nigrofasciata). In a series of laboratory trials, we exposed shoals of juvenile cichlids to conditions of elevated (vs. low) levels of background risk and then conditioned them to recognize a novel predator odour (rainbow trout, Oncorhynchus mykiss). The results of our first experiment demonstrate that despite showing reduced response intensities during initial conditioning (due to risk allocation), conditioned cichlids from high vs. low background risk show similar intensities of learned recognition when tested 24 h post‐conditioning. Moreover, elevated levels of background risk induced a predator avoidance response among unconditioned cichlids (due to induced neophobia). Our second experiment demonstrates that while we find no difference in the strength of learning when tested 24 h post‐conditioning, retention of acquired recognition is enhanced among cichlids from the high background predation risk treatment. Together, our results highlight the complex interacting effects past experience plays in shaping the response to acute predation threats.  相似文献   

10.
The ability of prey to recognize and adequately respond to predators determines their survival. Predator‐borne, post‐digestion dietary cues represent essential information for prey about the identity and the level of risk posed by predators. The phylogenetic relatedness hypothesis posits that prey should respond strongly to dietary cues from closely related heterospecifics but respond weakly to such cues from distantly related prey, following a hierarchical pattern. While such responses have mostly been observed in prey at their first encounter with predators, whether prey maintain such hierarchical levels of investment through time remains unclear. We investigated this question by exposing Rhacophorus arboreus tadpoles to the non‐consumptive effect of gape‐limited newt predators Cynops pyrrhogaster that were fed one of five prey diets across a gradient of phylogenetic relatedness: frog tadpoles (Rhacophorus arboreus, Rhacophorus schlegelii, Pelophylax nigromaculatus, and Hyla japonica) and medaka fish (Oryzias latipes). Predators’ diet, time, and their interaction significantly influenced tadpole activity level. We found support for the phylogenetic relatedness hypothesis: Investments in defense were stronger to cues from tadpole diets than to cues from fish diet. However, such a hierarchical response was recorded only in the first four days following predator exposure, then gradually disappear by day 8 on which the tadpoles exhibited similar activity level across all predator treatments. The findings suggest that, at least under the threat of gape‐limited predators, prey use phylogenetic information to evaluate risk and appropriately invest in defense during early encounters with predators; however, energy requirements may prevent prey from maintaining a high level of defense over long exposure to predation risk.  相似文献   

11.
Determining how prey learn the identity of predators and match their vigilance with current levels of threat is central to understanding the dynamics of predator–prey systems and the determinants of fitness. Our study explores how feeding history influences the relative importance of olfactory and visual sensory modes of learning, and how the experience gained through these sensory modes influences behaviour and survival in the field for a juvenile coral reef damselfish. We collected young fish immediately prior to their settlement to benthic habitats. In the laboratory, these predator-naïve fish were exposed to a high- or low-food ration and then conditioned to recognize the olfactory cues (odours) and/or visual cues from two common benthic predators. Fish were then allowed to settle on reefs in the field, and their behaviour and survival over 70 h were recorded. Feeding history strongly influenced their willingness to take risks in the natural environment. Conditioning in the laboratory with visual, olfactory or both cues from predators led fish in the field to display risk-averse behaviour compared with fish conditioned with sea water alone. Well-fed fish that were conditioned with visual, chemical or a combination of predator cues survived eight times better over the first 48 h on reefs than those with no experience of benthic predator cues. This experiment highlights the importance of a flexible and rapid mechanism of learning the identity of predators for survival of young fish during the critical life-history transition between pelagic and benthic habitats.  相似文献   

12.
This study evaluates whether Belding's ground squirrels (Spermophilus beldingi) recognize predators under natural conditions. I observed these squirrels for 300 h during two consecutive summers, during which I described 1029 aerial and terrestrial interactions, including 299 interactions with animals known to prey on squirrels. Squirrels responded differentially to predators and non-predators, to predators that hunt differently, and to contextually different interactions with the same predator. Responses shown in encounters with predators included Trill and Chirp vocalizing, upright Posting, crouching, running to burrow entrances, entering burrows, Approaching or chasing predators, and doubling-back on pursuing predators. Ground squirrels appear to adjust their antipredator behaviour depending on the amount and kind of danger they face during an encounter.  相似文献   

13.
The prediction that variability in ambient pH will influence the intensity and retention of learned predator recognition in juvenile rainbow trout Oncorhynchus mykiss was tested under laboratory conditions. Juvenile rainbow trout were conditioned to recognize the odour of a novel predator at pH 6·0 or 7·0 and then tested for learned recognition of the predator odour at pH 6·0 or 7·0 at 2 or 7 days post-conditioning. When tested 2 days post-conditioning, rainbow trout exhibited a significant learned antipredator response regardless of predator odour pH. The response was stronger, however, when the test pH matched the conditioning pH. When tested 7 days post-conditioning, rainbow trout only exhibited a learned response when conditioning and testing pH were the same. These results demonstrate that episodic acidification may impair the strength and retention of acquired predator recognition learning. Given the demonstrated survival benefits associated with learned predator recognition in prey fishes, such impairment will probably have considerable negative impacts at both individual and population levels.  相似文献   

14.
Predation risk influences foraging decisions and time allocation of prey species, and may result in habitat shifts from potentially dangerous to safer areas. We examined a wild population of western grey kangaroos (Macropus fuliginosus) to test the efficacy of predator faecal odour in influencing time allocated to different behaviours and inducing changes in habitat use. Kangaroos were exposed to fresh faeces of a historical predator, the dingo (Canis lupus dingo), a recently introduced predator, the red fox (Vulpes vulpes), a herbivore (horse, Equus caballus) and an unscented control simultaneously. Kangaroos did not increase vigilance in predator‐scented areas. However, they investigated odour sources by approaching and sniffing; more time was spent investigating fox odour than control odours. Kangaroos then exhibited a clear anti‐predator response to predator odours, modifying their space use by rapidly escaping, then avoiding fox and dingo odour sources. Our results demonstrate that wild western grey kangaroos show behavioural responses to predator faeces, investigating then avoiding these olfactory cues of potential predation risk, rather than increasing general vigilance. This study contributes to our understanding of the impact of introduced mammalian predators on marsupial prey and demonstrates that a native Australian marsupial can recognize and respond to the odour of potential predators, including one that has been recently introduced.  相似文献   

15.
Organisms often undergo shifts in habitats as their requirements change with ontogeny.Upon entering a new environment, it is vitally important to be able to rapidly assess predation risk. Predation pressure should selectively promote mechanisms that enable the rapid identification of novel predators. Here we tested the ability of a juvenile marine fish to simultaneously learn the identity of multiple previously unknown predators. Individuals were conditioned with a 'cocktail' of novel odours (from two predators and two non-predators) paired with either a conspecific alarm cue or a saltwater control and then tested for recognition of the four odours individually and two novel odours (one predator and one non-predator) the following day. Individuals conditioned with the 'cocktail' and alarm cue responded to the individual 'cocktail' odours with an antipredator response compared to controls. These results demonstrate that individuals acquire recognition of novel odours and that the responses were not due to innate recognition of predators or due to a generalised response to novel odours. Upon entering an unfamiliar environment prey species are able to rapidly assess the risk of predation, enhancing their chances of survival, through the assessment of chemical stimuli.  相似文献   

16.
Abstract Predation is recognized as a major selective pressure influencing population dynamics and evolutionary processes. Prey species have developed a variety of predator avoidance strategies, not least of which is olfactory recognition. However, within Australia, European settlement has brought with it a number of introduced predators, perhaps most notably the red fox (Vulpes vulpes) and domestic cat (Felis catus), which native prey species may be unable to recognize and thus avoid due to a lack of coexistence history. This study examined the response of native Tasmanian swamp rats (Rattus lutreolus velutinus) to predators of different coexistence history (native predator‐ spotted‐tail quoll (Dasyurus maculatus), domestic cats and the recently introduced red fox). We used an aggregate behavioural response of R. l. velutinus to predator integumental odour in order to assess an overall behavioural response to predation risk. Rattus lutreolus velutinus recognized the integumental odour of the native quoll (compared with control odours) but did not respond to either cat or fox scent (compared with control odur). In contrast, analyses of singular behaviours resulted in the conclusion that rats did not respond differentially to either native or introduced predators, as other studies have concluded. Therefore, measuring risk assessment behaviours at the level of overall aggregate response may be more beneficial in understanding and analysing complex behavioural patterns such as predator detection and recognition. These results suggest that fox and cat introductions (and their interactive effects) may have detrimental impacts upon small native Tasmanian mammals due to lack of recognition and thus appropriate responses.  相似文献   

17.
Predation plays a major role in shaping prey behaviour. Temporal patterns of predation risk have been shown to drive daily activity and foraging patterns in prey. Yet the ability to respond to temporal patterns of predation risk in environments inhabited by highly diverse predator communities, such as rainforests and coral reefs, has received surprisingly little attention. In this study, we investigated whether juvenile marine fish, Pomacentrus moluccensis (lemon damselfish), have the ability to learn to adjust the intensity of their antipredator response to match the daily temporal patterns of predation risk they experience. Groups of lemon damselfish were exposed to one of two predictable temporal risk patterns for six days. "Morning risk" treatment prey were exposed to the odour of Cephalopholis cyanostigma (rockcod) paired with conspecific chemical alarm cues (simulating a rockcod present and feeding) during the morning, and rockcod odour only in the evening (simulating a rockcod present but not feeding). "Evening risk" treatment prey had the two stimuli presented to them in the opposite order. When tested individually for their response to rockcod odour alone, lemon damselfish from the morning risk treatment responded with a greater antipredator response intensity in the morning than in the evening. In contrast, those lemon damselfish previously exposed to the evening risk treatment subsequently responded with a greater antipredator response when tested in the evening. The results of this experiment demonstrate that P. moluccensis have the ability to learn temporal patterns of predation risk and can adjust their foraging patterns to match the threat posed by predators at a given time of day. Our results provide the first experimental demonstration of a mechanism by which prey in a complex, multi-predator environment can learn and respond to daily patterns of predation risk.  相似文献   

18.
Previous studies have established that when a prey animal knows the identity of a particular predator, it can use this knowledge to make an ‘educated guess'' about similar novel predators. Such generalization of predator recognition may be particularly beneficial when prey are exposed to introduced and invasive species of predators or hybrids. Here, we examined generalization of predator recognition for woodfrog tadpoles exposed to novel trout predators. Tadpoles conditioned to recognize tiger trout, a hybrid derived from brown trout and brook trout, showed generalization of recognition of several unknown trout odours. Interestingly, the tadpoles showed stronger responses to odours of brown trout than brook trout. In a second experiment, we found that tadpoles trained to recognize brown trout showed stronger responses to tiger trout than those tadpoles trained to recognize brook trout. Given that tiger trout always have a brown trout mother and a brook trout father, these results suggest a strong maternal signature in trout odours. Tadpoles that were trained to recognize both brown trout and brook trout showed stronger response to novel tiger trout than those trained to recognize only brown trout or only brook trout. This is consistent with a peak shift in recognition, whereby cues that are intermediate between two known cues evoke stronger responses than either known cue. Given that our woodfrog tadpoles have no evolutionary or individual experience with trout, they have no way of knowing whether or not brook trout, brown trout or tiger trout are more dangerous. The differential intensity of responses that we observed to hybrid trout cues and each of the parental species indicates that there is a likely mismatch between risk and anti-predator response intensity. Future work needs to address the critical role of prey naivety on responses to invasive and introduced hybrid predators.  相似文献   

19.
Effects of ocean acidification on learning in coral reef fishes   总被引:2,自引:0,他引:2  
Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to concentrations of CO(2) predicted to occur in the mid- to late-century show maladaptive responses to predator cues. However, there is considerable variation both within and between species in CO(2) effects, whereby some individuals are unaffected at particular CO(2) concentrations while others show maladaptive responses to predator odour. Our goal was to test whether learning via chemical or visual information would be impaired by ocean acidification and ultimately, whether learning can mitigate the effects of ocean acidification by restoring the appropriate responses of prey to predators. Using two highly efficient and widespread mechanisms for predator learning, we compared the behaviour of pre-settlement damselfish Pomacentrus amboinensis that were exposed to 440 μatm CO(2) (current day levels) or 850 μatm CO(2), a concentration predicted to occur in the ocean before the end of this century. We found that, regardless of the method of learning, damselfish exposed to elevated CO(2) failed to learn to respond appropriately to a common predator, the dottyback, Pseudochromis fuscus. To determine whether the lack of response was due to a failure in learning or rather a short-term shift in trade-offs preventing the fish from displaying overt antipredator responses, we conditioned 440 or 700 μatm-CO(2) fish to learn to recognize a dottyback as a predator using injured conspecific cues, as in Experiment 1. When tested one day post-conditioning, CO(2) exposed fish failed to respond to predator odour. When tested 5 days post-conditioning, CO(2) exposed fish still failed to show an antipredator response to the dottyback odour, despite the fact that both control and CO(2)-treated fish responded to a general risk cue (injured conspecific cues). These results indicate that exposure to CO(2) may alter the cognitive ability of juvenile fish and render learning ineffective.  相似文献   

20.
Predation is a pervasive selective agent shaping a prey's behaviour, morphology and life history. To survive, prey animals have to respond adaptively to predation threats and this can be achieved through learned predator recognition. Cultural transmission of predator recognition is likely a widespread means of learning in social animals, including mammals, birds and fishes. However, no studies have investigated the cultural transmission of predator recognition in amphibians. In our study, we examined whether naïve woodfrog (Rana sylvatica) tadpoles can acquire the recognition of the odour of a predatory tiger salamander (Ambystoma tigrinum) from experienced conspecifics. After conditioning some tutors to recognize salamander odour, we paired naïve observer tadpoles with either a salamander‐naïve or salamander‐experienced tutor and exposed the pairs to either salamander odour or a water control. Observers were subsequently tested alone for a response to salamander odour. We found that when given salamander odour, observer tadpoles that were paired with a salamander‐experienced tutor successfully learned to recognize the salamander odour as a threat, whereas the observers paired with salamander‐naïve tutors did not. Likewise, tadpoles exposed to the water control did not learn to recognize the salamander regardless of whether they were paired with a naïve or experienced tutor. This is the first study demonstrating cultural transmission of predator recognition in an amphibian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号