共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsomal P450 monooxygenases contribute actively to the biotransformation of the antiglucocorticoid RU38486, an 11 beta-substituted nor-steroid. Pretreatment of adult rats by inducers of specific forms, belonging to different P450 subfamilies, affects the ability of liver microsomes to metabolize RU38486. Phenobarbital and pregnenolone 16 alpha-carbonitrile increase the metabolic activity of liver microsomes whereas methylcholanthrene decreases their capacity to oxidize the steroid. Thus P450 forms IIIA, IIB1,2 and IIC7 are good candidates to be involved in the degradation of this peculiar molecule. Our study has been completed by investigating whether RU38486 would influence the P450 spectrum. Whereas the treatment of rats with either a glucocorticoid (cortisol, dexamethasone) or an antiglucocorticoid (pregnenolone 16 alpha-carbonitrile) has been shown to induce the P450 activity by increasing the hepatic concentration of form IIIA, we observed a slight decrease of the P450 activity by treating the animals with RU38486. Moreover RU38486 was able to antagonize the P450 induction by the other steroids as well as it inhibits the synthesis of various liver enzymes induced by glucocorticoids (for instance tyrosine aminotransferase). These findings may be important for the therapeutic use of RU38486 since its inhibitory effect on P450 activity may be at the origin of drug interactions by modifying the endogenous hormonal status. 相似文献
2.
In an attempt to elucidate the relationship between the antiglucocorticoid effect and the state of differentiation of the target cells, we studied the metabolism of the potent antagonist in cultured liver and hepatoma cells (HTC, FAZA). After incubation of [3H]RU38486 with the cells for different periods of time, the native steroid and its metabolites were extracted and analyzed by thin layer chromatography. We observed that RU38486 was not metabolized in the transformed cell lines after a 3 h incubation. In contrast RU38486 was extensively metabolized in cultured liver cells. The observed degration could help explain why RU38486 inhibited tyrosine aminotransferase induction in hepatoma cells at a concentration 100 times lower than that needed in liver cells. Moreover this catabolism concerned specifically the antagonist RU38486 since other steroids tested (dexamethasone, promegestone) underwent a much slower degradation. Indirect experiments suggest that the alterations of the RU38486 molecule might be at least partially related to the cytochrome P-450 which is very active in the hepatocytes. This study was paralleled by testing the effect of the antagonist on the growth of hepatoma cells. RU38486 exerted an antiproliferative effect in absence of serum. On the basis of the low metabolism of RU38486 and of its antiproliferative effect in hepatoma cells. one can emphasize that RU38486 might represent a potential drug for use in cancer therapy. 相似文献
3.
Dimemorfan (d-3-methyl-N-methylmorphinan), an analogue of dextromethorphan, is commonly used as a non-opioid antitussive. To clarify the contribution of cytochrome P450 (P450) in dimemorfan N-demethylation, effects of selective inducers and inhibitors were studied in ICR mice. Phenobarbital (PB)- and dexamethasone (Dex)-treatments caused 5-fold increases of liver microsomal dimemorfan N-demethylation activity. In untreated mouse liver microsomes, demethylation activity was strongly inhibited by a CYP3A inhibitor, ketoconazole. In PB-and Dex-treated mouse liver microsomes, ketoconazole caused strong inhibition, whereas orphenadrine caused a decrease of less than 20%. Pretreatment of control mouse liver microsomes with anti-CYP3A inhibited demethylation activity, whereas pre-treatment with anti-CYP2B had no effect. In PB-and Dex-treated mouse liver microsomes, the demethylation activity was inhibited by both anti-CYP3A and anti-CYP2B. In control mice, the intrinsic clearance of dimemorfan from N-demethylation was 5.8 microl min(-1)mg protein(-1). In PB- and Dex-treated mice, the correlation coefficient of fitting using one-enzyme and two-enzyme models were similar. The intrinsic clearances of induced mouse liver microsomes were similar. These results revealed that CYP3A played a major role in hepatic demethylation in untreated mice. Both CYP3A and CYP2B were involved in this demethylation in PB- and Dex-treated mice. 相似文献
4.
Liver microsomal steroid 5-alpha-reduction is catalyzed by a NADPH-dependent enzyme system. The requirement of NADPH-cytochrome P-450 reductase to shuttle reduction equivalents from NADPH to steroid 5-alpha-reductase was investigated using an inhibitory antibody against NADPH-cytochrome P-450 reductase. This antibody preparation inhibited cytochrome c reduction in microsomes from female rat liver with an I50 of 0.75 mg antibody/mg of microsomal protein. Benzphetamine N-demethylation and testosterone 6-beta-hydroxylation, two cytochrome P-450-mediated oxidative reactions, were inhibited by the antibody. On the other hand, testosterone 5-alpha-reductase was not affected by the antibody. These results suggest that NADPH-cytochrome P-450 reductase is not an obligatory component of the liver microsomal steroid 5-alpha-reduction. 相似文献
5.
Human liver microsomal steroid metabolism: identification of the major microsomal steroid hormone 6 beta-hydroxylase cytochrome P-450 enzyme 总被引:10,自引:0,他引:10
D J Waxman C Attisano F P Guengerich D P Lapenson 《Archives of biochemistry and biophysics》1988,263(2):424-436
Cytochrome P-450-dependent steroid hormone metabolism was studied in isolated human liver microsomal fractions. 6 beta hydroxylation was shown to be the major route of NADPH-dependent oxidative metabolism (greater than or equal to 75% of total hydroxylated metabolites) with each of three steroid substrates, testosterone, androstenedione, and progesterone. With testosterone, 2 beta and 15 beta hydroxylation also occurred, proceeding at approximately 10% and 3-4% the rate of microsomal 6 beta hydroxylation, respectively, in each of the liver samples examined. Rates for the three steroid 6 beta-hydroxylase activities were highly correlated with each other (r = 0.95-0.97 for 25 individual microsomal preparations), suggesting that a single human liver P-450 enzyme is the principal microsomal 6 beta-hydroxylase catalyst with all three steroid substrates. Steroid 6 beta-hydroxylase rates correlated well with the specific content of human P-450NF (r = 0.69-0.83) and with its associated nifedipine oxidase activity (r = 0.80), but not with the rates for debrisoquine 4-hydroxylase, phenacetin O-deethylase, or S-mephenytoin 4-hydroxylase activities or the specific contents of their respective associated P-450 forms in these same liver microsomes (r less than 0.2). These correlative observations were supported by the selective inhibition of human liver microsomal 6 beta hydroxylation by antibody raised to either human P-450NF or a rat homolog, P-450 PB-2a. Anti-P-450NF also inhibited human microsomal testosterone 2 beta and 15 beta hydroxylation in parallel to the 6 beta-hydroxylation reaction. This antibody also inhibited rat P-450 2a-dependent steroid hormone 6 beta hydroxylation in uninduced adult male rat liver microsomes but not the steroid 2 alpha, 16 alpha, or 7 alpha hydroxylation reactions catalyzed by other rat P-450 forms. Finally, steroid 6 beta hydroxylation catalyzed by either human or rat liver microsomes was selectively inhibited by NADPH-dependent complexation of the macrolide antibiotic triacetyloleandomycin, a reaction that is characteristic of members of the P-450NF gene subfamily (P-450 IIIA subfamily). These observations establish that P-450NF or a closely related enzyme is the major catalyst of steroid hormone 6 beta hydroxylation in human liver microsomes, and furthermore suggest that steroid 6 beta hydroxylation may provide a useful, noninvasive monitor for the monooxygenase activity of this hepatic P-450 form. 相似文献
6.
7.
M K Agarwal G Lombardo N Eliezer V K Moudgil 《Biochemical and biophysical research communications》1985,133(2):745-752
The kinetics of steroid binding to rat liver glucocorticoid receptor (GR) and receptor denaturation were dependent upon the nature of the molecule occupying GR. Both the agonist [triamcinolone acetonide (TA)] and the antagonist (Ru38486) however competed for the same saturable binding site. Despite opposing physiological action, both steroid analogues permitted receptor activation as evident by binding to DNA-cellulose and 9S to 4S shift on sucrose gradient sedimentation. It therefore seems necessary to reevaluate a current notion that antagonist action of RU38486 in rat liver is a result of impaired receptor activation. 相似文献
8.
Pyrethroid resistance is widespread in the malaria vector Anopheles gambiae leading to concerns about the future efficacy of bednets with pyrethroids as the sole active ingredient. The incorporation of pyriproxyfen (PPF), a juvenile hormone analogue, into pyrethroid treated bednets is being trialed in Africa. Pyrethroid resistance is commonly associated with elevated levels of P450 expression including CYPs 6M2, 6P2, 6P3, 6P4, 6P5, 6Z2 and 9J5. Having expressed these P450s in E. coli we find all are capable of metabolizing PPF. Inhibition of these P450s by permethrin, deltamethrin and PPF was also examined. Deltamethrin and permethrin were moderate inhibitors (IC50 1–10 μM) of diethoxyfluorescein (DEF) activity for all P450s apart from CYP6Z2 (IC50 > 10 μM), while PPF displayed weaker inhibition of all P450s (IC50 > 10 μM) except CYP's 6Z2 and 6P2 (IC50 1–10 μM). We found evidence of low levels of cross resistance between PPF and other insecticide classes by comparing the efficacy of PPF in inhibiting metamorphosis and inducing female sterility in an insecticide susceptible strain of An. gambiae and a multiple resistant strain from Cote d’Ivoire. 相似文献
9.
S. Chasserot-Golaz G. Beck 《The Journal of steroid biochemistry and molecular biology》1992,41(3-8):653-657
In a previous work on rat liver microsomes, we demonstrated that cytochrome P450 isozymes (P450) are engaged in the metabolism of RU486. In order to study the underlying mechanism at the molecular level, our investigations were shifted to a simplified system of cultured hepatoma cells which present a dissociation in the expression of distinct P450 coding genes. Our results show that Fao cells represent a convenient model to study both: (i) the degradation of RU486. Forms IIB1,2 and IIC7, which are present in Fao cells, may contribute to the demethylation of the molecule. Form IIIA, which has not been detected in Fao cells, is probably responsible for its oxidation in the liver; (ii) the effect of RU486 on the expression of P450 enzymes. Unlike other steroids (dexamethasone and pregnenolone 16-carbonitrile), RU486 does not induce P450 activity but inhibits the inducing activity of other agents such as dexamethasone and also phenobarbital. These findings may be important for the therapeutic use of RU486 since its inhibitory effect on P450 activity may be at the origin of drug interactions by modifying the endogenous hormonal status. 相似文献
10.
Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase 总被引:2,自引:0,他引:2
The O-dealkylation of 7-alkoxyresorufins to the highly fluorescent compound, resorufin (7-hydroxyphenoxazone), provides a rapid, sensitive, and convenient assay of certain forms of liver microsomal cytochrome P450. The results of this study indicate that NADPH-cytochrome P450 reductase catalyzes the reduction of resorufin (and the 7-alkoxyresorufins) to a colorless, nonfluorescent compound(s). The reduction of resorufin by NADPH-cytochrome P450 reductase was supported by NADPH but not NADH, and was not inhibited by dicumarol, which established that the reaction was not catalyzed by contaminating DT-diaphorase (NAD[P]H-quinone oxidoreductase). In addition to the rate of reduction, the extent of reduction of resorufin was dependent on the concentration of NADPH-cytochrome P450 reductase. The maintenance of steady-state levels of reduced resorufin required the continuous oxidation of NADPH, during which molecular O2 was consumed. When NADPH was completely consumed, the spectroscopic and fluorescent properties of resorufin were fully restored. These results indicate that the reduction of resorufin by NADPH-cytochrome P450 reductase initiates a redox cycling reaction. Stoichiometric measurements revealed of 1:1:1 relationship between the amount of NADPH and O2 consumed and the amount of H2O2 formed (measured fluorometrically). The amount of O2 consumed during the redox cycling of resorufin decreased approximately 50% in the presence of catalase, whereas the rate of O2 consumption decreased in the presence of superoxide dismutase. These results suggest that, during the reoxidation of reduced resorufin, O2 is converted to H2O2 via superoxide anion. Experiments with acetylated cytochrome c further implicated superoxide anion as an intermediate in the reduction of O2 to H2O2. However, the ability of reduced resorufin to reduce acetylated cytochrome c directly (i.e., without first reducing O2 to superoxide anion) precluded quantitative measurements of superoxide anion formation. Superoxide dismutase, but not catalase, increased the steady-state level of reduced resorufin and considerably delayed its reoxidation. This indicates that superoxide anion is not only capable of reoxidizing reduced resorufin, but is considerably more effective than molecular O2 in this regard. Overall, these results suggest that NADPH-cytochrome P450 reductase catalyzes the one-electron reduction of resorufin (probably to the corresponding semiquinoneimine radical) which can either undergo a second, one-electron reduction (presumably to the corresponding dihydroquinoneimine) or a one-electron oxidation by reducing molecular O2 to superoxide anion.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
11.
M R Owens C D Cimino J A Donnelly 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1986,183(3):339-342
The role of the liver in metabolism of heparin was studied using the isolated rat liver perfused in vitro for 10 hr. Porcine intestinal heparin (1000 u) was added to the recirculating liver perfusate, and serial heparin measurements were performed on the liver perfusate every 2 hr, as well as on bile samples secreted by the perfused liver. Heparin concentration remained at a constant level throughout the 10 hr of perfusion, and there was no detectable heparin secreted into bile samples. The findings suggest that hepatic metabolism/clearance plays a minimal role in heparin kinetics in plasma. 相似文献
12.
Anzenbacherová E Janalík J Popa I Strnad M Anzenbacher P 《Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia》2005,149(2):349-351
Aromatic cytokinins (ortho-topolin riboside, 6-benzylaminopurine riboside and 6-(2-hydroxy-3-methoxybenzyla mino)purine riboside) were tested for their possible interaction with human liver microsomal cytochromes P450 by absorption difference spectroscopy. All three compounds were shown to bind to the CYP enzymes producing a high to low spin shift of the heme iron yielding a Soret absorption band shift to approximately 425 nm. As this type of spectral change means that the substance is able to bind directly to the heme iron, the results obtained open the possibility of an interaction of these compounds with metabolism of other drugs or, in general, with other substrates of cytochromes P450. 相似文献
13.
Fitzpatrick JL Ripp SL Smith NB Pierce WM Prough RA 《Archives of biochemistry and biophysics》2001,389(2):278-287
Administration of dehydroepiandrosterone (DHEA) to rodents produces many unique biological responses, some of which may be due to metabolism of DHEA to more biologically active products. In the current study, DHEA metabolism was studied using human and rat liver microsomal fractions. In both species, DHEA was extensively metabolized to multiple products; formation of these products was potently inhibited in both species by miconazole, demonstrating a principal role for cytochrome P450. In the rat, use of P450 form-selective inhibitors suggested the participation of P4501A and 3A forms in DHEA metabolism. Human liver samples displayed interindividual differences in that one of five subjects metabolized DHEA to a much greater extent than the others. This difference correlated with the level of P4503A activity present in the human liver samples. For one subject, troleandomycin inhibited hepatic microsomal metabolism of DHEA by 78%, compared to 81% inhibition by miconazole, suggesting the importance of P4503A in these reactions. Form-selective inhibitors of P4502D6 and P4502E1 had a modest inhibitory effect, suggesting that these forms may also contribute to metabolism of DHEA in humans. Metabolites identified by LC-MS in both species included 16alpha-hydroxy-DHEA, 7alpha-hydroxy-DHEA, and 7-oxo-DHEA. While 16alpha-hydroxy-DHEA appeared to be the major metabolite produced in rat, the major metabolite produced in humans was a mono-hydroxylated DHEA species, whose position of hydroxylation is unknown. 相似文献
14.
15.
Antibody-inhibition experiments established that the induction of cytochrome P450c is largely responsible for the marked increase in liver microsomal 7-ethoxyresorufin O-dealkylation in rats treated with 3-methylcholanthrene, whereas the induction of cytochrome P450b and/or P450e is largely responsible for the marked increase in 7-pentoxy- and 7-benzyloxyresorufin O-dealkylation in rats treated with phenobarbital. When reconstituted with NADPH-cytochrome P450 reductase and lipid, purified cytochrome P450c catalyzed the O-dealkylation of 7-ethoxyresorufin at a rate of approximately 30 nmol/nmol P450/min, which far exceeded the rate catalyzed by either purified cytochromes P450b and P450e or microsomal cytochrome P450c. In contrast, purified cytochrome P450b and P450e were poor catalysts of the O-dealkylation of 7-pentoxy- and 7-benzyloxyresorufin. However, purified cytochrome P450b is an excellent catalyst of several other reactions, such as the N-demethylation of benzphetamine, the hydroxylation of testosterone, and the O-dealkylation of 7-ethoxycoumarin. The low rate of 7-pentoxyresorufin O-dealkylation catalyzed by purified cytochrome P450b did not reflect a requirement for cytochrome b5, and could not be ascribed to an artifact of the method used to measure the formation of resourufin. The catalytic activity of purified cytochrome P450b toward 7-pentoxyresorufin was consistently low over a range of substrate and lipid concentrations, and was not stimulated by sodium deoxycholate (which stimulates the N-demethylation of benzphatamine by purified cytochrome P450b). Evidence is presented which indicates that cytochrome P450c catalyzes the O-dealkylation of both the oxidized and reduced forms of 7-ethoxyresorufin, with perhaps a slight preference for the reduced form. In contrast, cytochrome P450b preferentially catalyzes the O-dealkylation of the oxidized form of 7-pentoxyresorufin. Conditions that favored formation of the reduced form of 7-ethoxyresorufin tended to stimulate its O-dealkylation by purified cytochrome P450c, whereas conditions that favored formation of the reduced form of 7-pentoxyresorufin decreased its rate of O-dealkylation by purified cytochrome P450b. Such conditions included a molar excess of NADPH-cytochrome P450 reductase over cytochrome P450, the presence of superoxide dismutase, and the presence of DT-diaphorase (liver cytosol).(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
16.
V Ullrich P Weber P Wollenberg 《Biochemical and biophysical research communications》1975,64(3):808-813
Liver microsomes from ethanol-pretreated rats have been compared with microsomes from male and female controls and phenobarbital- and benzpyrene-pretreated rats. The 0-dealkylation activity for 7-ethoxycoumarin was enhanced after all treatments. Metyrapone selectively inhibited the activity after pretreatment with phenobarbital and naphthoflavone blocked the activity after benzpyrene treatment. Ethanol and even more so tetrahydrofurane inhibited specifically the 0-dealkylation in microsomes from ethanol-pretreated rats. Only in these microsomes tetrahydrofurance produced a pronounced ligand-type optical difference spectrum and concomitantly a new low-spin cytochrome P450 species in the EPR-spectrum. According to inhibition experiments, liver microsomes from male and female rats have a different pattern of cytochrome P450 species. 相似文献
17.
It has been shown previously that liver microsomal steroid 5 alpha-reductase activity increases with age in female but not male rats, which coincides with a female-specific, age-dependent decline in the cytochrome P-450-dependent oxidation of testosterone to 1 beta-, 2 alpha-, 2 beta-, 6 alpha-, 6 beta-, 7 alpha-, 15 beta-, 16 alpha-, 16 beta-, and 18-hydroxytestosterone and androstenedione. To determine whether the increase in steroid 5 alpha-reductase activity is responsible for the decrease in testosterone oxidation, we have examined the effects of the steroid 5 alpha-reductase inhibitor, 4-MA (17 beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one), on the pathways of testosterone oxidation catalyzed by rat liver microsomes. We have also determined which hydroxytestosterone metabolites are substrates for steroid 5 alpha-reductase. At concentrations of 0.1 to 10 microM, 4-MA completely inhibited steroid 5 alpha-reductase activity without inhibiting the pathways of testosterone oxidation catalyzed by liver microsomes from rats of different age and sex, and from rats induced with phenobarbital or pregnenolone-16 alpha-carbonitrile. 4-MA (10 microM) had little or no effect on the oxidation of testosterone catalyzed by liver microsomes from mature male rats (which have low steroid 5 alpha-reductase activity). In contrast, the hydroxylated testosterone metabolites formed by liver microsomes from mature female rats (which have high steroid 5 alpha-reductase activity) accumulated to a much greater extent in the presence of 4-MA. Evidence is presented that 4-MA increases the accumulation of hydroxytestosterones by two mechanisms. First, 4-MA inhibited the 5 alpha-reduction of those metabolites (such as 6 beta-hydroxytestosterone) that were found to be excellent substrates for steroid 5 alpha-reductase. In the absence of 4-MA, these metabolites eventually disappeared from incubations containing liver microsomes from mature female rats. Second, 4-MA inhibited the formation of 5 alpha-dihydrotestosterone, which otherwise competed with testosterone for oxidation by cytochrome P-450. This second mechanism explains why 4-MA increased the accumulation of metabolites (such as 7 alpha-hydroxytestosterone) that were found to be poor substrates for steroid 5 alpha-reductase. Despite its marked effect on the accumulation of hydroxylated testosterone metabolites, 4-MA had no effect on their initial rate of formation by liver microsomes from either male or female rats.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
18.
Nutritionally triggered alterations in the regiospecificity of arachidonic acid oxygenation by rat liver microsomal cytochrome P450 总被引:1,自引:0,他引:1
Cytochrome P450-dependent oxidation of arachidonic acid was studied in liver microsomes from normal fed, protein-energy malnourished, and refed rats. The overall rate of arachidonic acid oxidation was very similar in microsomes from the three groups, but microsomes from malnourished rats showed a higher turnover rate than microsomes from normal fed and refed rats. The regiospecificity of cytochrome P450 oxidation of arachidonic acid was drastically altered by the animal nutritional status. Thus, protein-energy malnutrition results in a clear stimulation of total omega and omega-1 hydroxylation, concomitant with a marked decrease in olefin epoxidation and allyllic oxidations. These changes, as well as the documented biological activity of some of the cytochrome P450 arachidonate metabolites, suggest that protein-energy deficiency might help to select P450 isozymes which are probably involved in key monooxygenation reactions of physiological substrates. 相似文献
19.
To investigate the potential interaction of the various pathways of androgen hydroxylation, we have conducted studies to identify the profile of products formed during the time course of metabolism of androst-4-ene-3,17-dione (AD). Incubates containing AD, NADPH, and liver microsomes (from rats pretreated with phenobarbital) were sampled at times between 0 and 20 min and the metabolites resolved by reverse-phase (C18) high-performance liquid chromatography. By this method, the pattern of formation and of utilization of eight major primary and secondary metabolites of AD was determined. We report here the formation of two previously unidentified major metabolites of AD: 6 beta,16 alpha-dihydroxyandrost-4-ene-3,17-dione and 6 beta,16 beta-dihydroxyandrost-4-ene-3,17-dione. We propose that liver microsomal cytochromes P-450 can sequentially hydroxylate a single molecule of AD at multiple sites. These hydroxylase activities are presumably a result of multiple cytochrome P-450 isozymes acting on AD resulting in a transient time course for the appearance of some monohydroxylated metabolites. In addition, a unidirectional conversion of the metabolite 16 alpha-hydroxyandrost-4-ene-3,17-dione to 16 beta-hydroxyandrost-4-ene-3,17-dione is described. Evidence is provided to support the role of cytochrome P-450 in catalyzing this reaction. 相似文献