首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Expression profiling using microarray technology has refined the classification of cancer. The greatest advances have been in lymphomas, leukaemias, and breast cancer where array information identified new diagnostic categories not achievable by standard microscopic or molecular means. These sub-categories often have distinct prognostic profiles. The same investigations have clarified the cellular lineage of cancer types, highlighted the importance of biochemical pathways in determining the expression 'phenotype', and identified potential new diagnostic markers and therapeutic targets.  相似文献   

5.
6.
7.
Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high‐throughput tag‐sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild‐type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence‐assisted cell sorting followed by RNA‐seq analysis of DMC1:GFP‐labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis.  相似文献   

8.
9.
10.
11.
BACKGROUND: Orofacial development is a multifaceted process involving precise, spatio‐temporal expression of a panoply of genes. MicroRNAs (miRNAs), the largest family of noncoding RNAs involved in gene silencing, represent critical regulators of cell and tissue differentiation. MicroRNA gene expression profiling is an effective means of acquiring novel and valuable information regarding the expression and regulation of genes, under the control of miRNA, involved in mammalian orofacial development. METHODS: To identify differentially expressed miRNAs during mammalian orofacial ontogenesis, miRNA expression profiles from gestation day (GD) ‐12, ‐13 and ‐14 murine orofacial tissue were compared utilizing miRXplore microarrays from Miltenyi Biotech. Quantitative real‐time PCR was utilized for validation of gene expression changes. Cluster analysis of the microarray data was conducted with the clValid R package and the UPGMA clustering method. Functional relationships between selected miRNAs were investigated using Ingenuity Pathway Analysis. RESULTS: Expression of over 26% of the 588 murine miRNA genes examined was detected in murine orofacial tissues from GD‐12–GD‐14. Among these expressed genes, several clusters were seen to be developmentally regulated. Differential expression of miRNAs within such clusters wereshown to target genes encoding proteins involved in cell proliferation, cell adhesion, differentiation, apoptosis and epithelial‐mesenchymal transformation, all processes critical for normal orofacial development. CONCLUSIONS: Using miRNA microarray technology, unique gene expression signatures of hundreds of miRNAs in embryonic orofacial tissue were defined. Gene targeting and functional analysis revealed that the expression of numerous protein‐encoding genes, crucial to normal orofacial ontogeny, may be regulated by specific miRNAs. Birth Defects Research (Part A), 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
14.
We have developed a highly sensitive, specific and reproducible method for microRNA (miRNA) expression profiling, using the BeadArray™ technology. This method incorporates an enzyme-assisted specificity step, a solid-phase primer extension to distinguish between members of miRNA families. In addition, a universal PCR is used to amplify all targets prior to array hybridization. Currently, assay probes are designed to simultaneously analyse 735 well-annotated human miRNAs. Using this method, highly reproducible miRNA expression profiles were generated with 100–200 ng total RNA input. Furthermore, very similar expression profiles were obtained with total RNA and enriched small RNA species (R2 ≥ 0.97). The method has a 3.5–4 log (105–109 molecules) dynamic range and is able to detect 1.2- to 1.3-fold-differences between samples. Expression profiles generated by this method are highly comparable to those obtained with RT–PCR (R2 = 0.85–0.90) and direct sequencing (R = 0.87–0.89). This method, in conjunction with the 96-sample array matrix should prove useful for high-throughput expression profiling of miRNAs in large numbers of tissue samples.  相似文献   

15.
Pseudomonas aeruginosa is a highly adaptable bacterium that thrives in a broad range of ecological niches and can infect multiple hosts as diverse as plants, nematodes and mammals. In humans, it is an important opportunistic pathogen. This wide adaptability correlates with its broad genetic diversity. In this study, we used a deep-sequencing approach to explore the complement of small RNAs (sRNAs) in P. aeruginosa as the number of such regulatory molecules previously identified in this organism is relatively low, considering its genome size, phenotypic diversity and adaptability. We have performed a comparative analysis of PAO1 and PA14 strains which share the same host range but differ in virulence, PA14 being considerably more virulent in several model organisms. Altogether, we have identified more than 150 novel candidate sRNAs and validated a third of them by Northern blotting. Interestingly, a number of these novel sRNAs are strain-specific or showed strain-specific expression, strongly suggesting that they could be involved in determining specific phenotypic traits.  相似文献   

16.
17.
Dai R  Zhang Y  Khan D  Heid B  Caudell D  Crasta O  Ahmed SA 《PloS one》2010,5(12):e14302

Background

Recent reports have shown that microRNAs (miRNAs) regulate vital immunological processes and have emerged as key regulators of immune system development and function. Therefore, it is important to determine miRNA dysregulation and its pathogenic contribution in autoimmune diseases, an aspect not adequately addressed thus far.

Methodology/Principal Findings

In this study, we profiled miRNA expressions in splenic lymphocytes from three murine lupus models (MRL-lpr, B6-lpr and NZB/WF1) with different genetic background by miRNA microarray assays and Real-time RT-PCR. Despite the genetic differences among these three lupus stains, a common set of dysregulated miRNAs (miR-182-96-183 cluster, miR-31, and miR-155) was identified in splenocytes when compared with age-matched control mice. The association of these miRNAs with the disease was highlighted by our observation that this miRNA expression pattern was evident in NZB/W mice only at an age when lupus disease is manifested. Further, we have shown that the miRNA dysregulation in MRL-lpr mice was not simply due to the activation of splenocytes. By Real-time RT-PCR, we confirmed that these miRNAs were upregulated in both purified splenic B and T cells from MRL-lpr mice. miR-127 and miR-379, which were greatly upregulated in splenocytes from lpr mice, were moderately increased in diseased NZB/W mice. In addition, Real-time RT-PCR revealed that miR-146a, miR-101a, and miR-17-92 were also markedly upregulated in splenic T, but not B cells from MRL-lpr mice.

Conclusions/Significance

The identification of common lupus disease-associated miRNAs now forms the basis for the further investigation of the pathogenic contribution of these miRNAs in autoimmune lupus, which will advance our knowledge of the role of miRNAs in autoimmunity. Given that miRNAs are conserved, with regard to both evolution and function, our observation of a common lupus disease-associated miRNA expression pattern in murine lupus models is likely to have significant pathogenic, diagnostic, and/or therapeutic implications in human lupus.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号