首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hair loss and defective T- and B-cell function in mice lacking ORAI1   总被引:2,自引:0,他引:2  
ORAI1 is a pore subunit of the store-operated Ca2+ release-activated Ca2+ (CRAC) channel. To examine the physiological consequences of ORAI1 deficiency, we generated mice with targeted disruption of the Orai1 gene. The results of immunohistochemical analysis showed that ORAI1 is expressed in lymphocytes, skin, and muscle of wild-type mice and is not expressed in Orai1−/− mice. Orai1−/− mice with the inbred C57BL/6 background showed perinatal lethality, which was overcome by crossing them to outbred ICR mice. Orai1−/− mice were small in size, with eyelid irritation and sporadic hair loss resembling the cyclical alopecia observed in mice with keratinocyte-specific deletion of the Cnb1 gene. T and B cells developed normally in Orai1−/− mice, but B cells showed a substantial decrease in Ca2+ influx and cell proliferation in response to B-cell receptor stimulation. Naïve and differentiated Orai1−/− T cells showed substantial reductions in store-operated Ca2+ entry, CRAC currents, and cytokine production. These features are consistent with the severe combined immunodeficiency and mild extraimmunological symptoms observed in a patient with a missense mutation in human ORAI1 and distinguish the ORAI1-null mice described here from a previously reported Orai1 gene-trap mutant mouse which may be a hypomorph rather than a true null.  相似文献   

2.
p53 binding protein 1 (53BP1) is a putative DNA damage sensor that accumulates at sites of double-strand breaks (DSBs) in a manner dependent on histone H2AX. Here we show that the loss of one or both copies of 53BP1 greatly accelerates lymphomagenesis in a p53-null background, suggesting that 53BP1 and p53 cooperate in tumor suppression. A subset of 53BP1-/- p53-/- lymphomas, like those in H2AX-/- p53-/- mice, were diploid and harbored clonal translocations involving antigen receptor loci, indicating misrepair of DSBs during V(D)J recombination as one cause of oncogenic transformation. Loss of a single 53BP1 allele compromised genomic stability and DSB repair, which could explain the susceptibility of 53BP1+/- mice to tumorigenesis. In addition to structural aberrations, there were high rates of chromosomal missegregation and accumulation of aneuploid cells in 53BP1-/- p53+/+ and 53BP1-/- p53-/- tumors as well as in primary 53BP1-/- splenocytes. We conclude that 53BP1 functions as a dosage-dependent caretaker that promotes genomic stability by a mechanism that preserves chromosome structure and number.  相似文献   

3.
Fbxo7 is an unusual F box protein that augments D-type cyclin complex formation with Cdk6, but not Cdk4 or Cdk2, and its over-expression has been demonstrated to transform immortalised fibroblasts in a Cdk6-dependent manner. Here we present new evidence in vitro and in vivo on the oncogenic potential of this regulatory protein in primary haematopoietic stem and progenitor cells (HSPCs). Increasing Fbxo7 expression in HSPCs suppressed their colony forming ability in vitro, specifically decreasing CD11b (Mac1) expression, and these effects were dependent on an intact p53 pathway. Furthermore, increased Fbxo7 levels enhanced the proliferative capacity of p53 null HSPCs when they were grown in reduced concentrations of stem cell factor. Finally, irradiated mice reconstituted with p53 null, but not wild-type, HSPCs expressing Fbxo7 showed a statistically significant increase in the incidence of T cell lymphoma in vivo. These data argue that Fbxo7 negatively regulates the proliferation and differentiation of HSPCs in a p53-dependent manner, and that in the absence of p53, Fbxo7 expression can promote T cell lymphomagenesis.  相似文献   

4.
5.
6.
Juvenile myelomonocytic leukemia (JMML) is a disease that occurs in young children and is associated with a high mortality rate. In most patients, JMML has a progressive course leading to death by virtue of infection, bleeding, or progression to acute myeloid leukemia (AML). As it is known that children with neurofibromatosis type 1 syndrome have a markedly increased risk of developing JMML, we have previously developed a mouse model of JMML through reconstitution of lethally irradiated mice with hematopoietic stem cells homozygous for a loss-of-function mutation in the Nf1 gene (D. L. Largaespada, C. I. Brannan, N. A. Jenkins, and N. G. Copeland, Nat. Genet. 12:137-143, 1996). In the course of these experiments, we found that all these genetically identical reconstituted mice developed a JMML-like disorder, but only a subset went on to develop more acute disease. This result strongly suggests that additional genetic lesions are responsible for disease progression to AML. Here, we describe the production of a unique tumor panel, created using the BXH-2 genetic background, for identification of these additional genetic lesions. Using this tumor panel, we have identified a locus, Epi1, which maps 30 to 40 kb downstream of the Myb gene and appears to be the most common site of somatic viral integration in BXH-2 mice. Our findings suggest that proviral integrations at Epi1 cooperate with loss of Nf1 to cause AML.  相似文献   

7.
Maintenance of telomere length and function is critical for the efficient proliferation of eukaryotic cells. Here, we examine the interactions between telomere dysfunction and p53 in cells and organs of telomerase-deficient mice. Coincident with severe telomere shortening and associated genomic instability, p53 is activated, leading to growth arrest and/or apoptosis. Deletion of p53 significantly attenuated the adverse cellular and organismal effects of telomere dysfunction, but only during the earliest stages of genetic crisis. Correspondingly, the loss of telomere function and p53 deficiency cooperated to initiate the transformation process. Together, these studies establish a key role for p53 in the cellular response to telomere dysfunction in both normal and neoplastic cells, question the significance of crisis as a tumor suppressor mechanism, and identify a biologically relevant stage of advanced crisis, termed genetic catastrophe.  相似文献   

8.
DNA aneuploidy, p53 overexpression, and high cell proliferation frequently occur in gastric cancer. However, little is known about the time of their appearance throughout cancer progression. Therefore, the objective of the present study was to determine when such abnormalities occur during gastric cancer progression. We classified the gastric cancers examined into intestinal (n = 65) and diffuse (n = 34) types. DNA ploidy was examined using flow cytometry and expression of MIB-1 and p53 immunoreactivity were studied using the avidin-biotin complex method in three stages of gastric cancer (mucosal, submucosal, deeply invasive cancer, i.e., advanced cancer). The incidence of DNA aneuploidy in intestinal-type mucosal cancers (15/27, 55.6%) was lower than that of submucosal invasive cancers (14/16, 87.5%) or advanced cancers (19/22, 86.4%), while a low incidence of DNA aneuploidy was observed in each diffuse-type cancer group (mucosal, 1/12, 8.3%; submucosal invasive, 3/9, 33.3%; advanced, 8/14, 57.1%). Although overexpression of the p53 gene in intestinal-type cancer was found in early stage, that in diffuse-type cancer was observed in advanced stage. Among the intestinal-type mucosal cancers, the MIB-1 percent positive was higher in aneuploid tumors than diploid ones. DNA aneuploidy and overexpression of the p53 gene may play an important role in the early tumorigenesis of intestinal-type gastric cancer and in the late event of tumorigenesis of diffuse-type gastric cancer.  相似文献   

9.
The high frequency of p53 mutation in human cancers indicates the important role of p53 in suppressing tumorigenesis. It is well established that the p53 regulates multiple, distinct cellular functions such as cell-cycle arrest and apoptosis. Despite intensive studies, little is known about which function is essential, or if multiple pathways are required, for p53-dependent tumor suppression in vivo. Using a mouse brain carcinoma model that shows high selective pressure for p53 inactivation, we found that even partially abolishing p53-dependent apoptosis by Bax inactivation was sufficient to significantly reduce the selective pressure for p53 loss. This finding is consistent with previous reports that apoptosis is the primary p53 function selected against during Eμ-myc-induced mouse lymphoma progression. However, unlike observed in the Eμ-myc-induced lymphoma model, attenuation of apoptosis is not sufficient to phenocopy the aggressive tumor progression associated with complete loss of p53 activity. We conclude that apoptosis is the primary tumor suppressive p53 function and the ablation of additional p53 pleiotropic effects further exacerbates tumor progression.  相似文献   

10.
p73 suppresses polyploidy and aneuploidy in the absence of functional p53   总被引:2,自引:0,他引:2  
Previous studies showed that p53 plays a central role in G1 and DNA damage checkpoints, thus contributing to genomic stability. We show here that p73 also plays a role in genomic integrity but this mechanism is manifest only when p53 is lost. Isolated p73 loss in primary cells does not induce genomic instability. Instead, it results in impaired proliferation and premature senescence due to compensatory activation of p53. Combined loss of p73 and p53 rescues these defects, but at the expense of exacerbated genomic instability. This leads to rapid increase in polyploidy and aneuploidy, markedly exceeding that of p53 loss alone. Constitutive deregulation of cyclin-Cdk activities and excess failure of the G2/M DNA damage checkpoint appear to fuel increased ploidy abnormalities upon p53/p73 loss, while primary mitotic defects do not play a causal role. These data indicate that p73 is essential for suppressing polyploidy and aneuploidy when p53 is inactivated.  相似文献   

11.
Phosphorylation of the p53 tumor suppressor at Ser20 (murine Ser23) has been proposed to be critical for disrupting p53 interaction with its negative regulator, MDM2, and allowing p53 stabilization. To determine the importance of Ser23 for the function of p53 in vivo, we generated a mouse in which the endogenous p53 locus was targeted to replace Ser23 with alanine. We show that, in mouse embryonic fibroblasts generated from Ser23 mutant mice, Ser23 mutation did not dramatically reduce IR-induced p53 protein stabilization or p53-dependent cell cycle arrest. However, in Ser23 mutant thymocytes and in the developing cerebellum, p53 stabilization following IR was decreased and resistance to apoptosis was observed. Homozygous Ser23 mutant animals had a reduced lifespan, but did not develop thymic lymphomas or sarcomas that are characteristic of p53-/- mice. Instead, Ser23 mutant animals died between 1 and 2 years with tumors that were most commonly of B-cell lineage. These data support an important role for Ser20/23 phosphorylation in p53 stabilization, apoptosis and tumor suppression.  相似文献   

12.
Thirty percent of human breast cancers have amplification of ERBB2, often in conjunction with mutations in p53. The most common p53 mutation in human breast cancers is an Arg-to-His mutation at codon 175, an allele that functions in a dominant oncogenic manner in tumorigenesis assays and is thus distinct from loss of p53. Transgenic mice expressing mouse mammary tumor virus-driven neu transgene (MMTV-neu) develop clonal mammary tumors with a latency of 234 days, suggesting that other events are necessary for tumor development. We have examined the role of mutations in p53 in tumor development in these mice. We have found that 37% of tumors arising in these mice have a missense mutations in p53. We have directly tested for cooperativity between neu and mutant p53 in mammary tumorigenesis by creating bitransgenic mice carrying MMTV-neu and 172Arg-to-His p53 mutant (p53-172H). In these bitransgenic mice, tumor latency is shortened to 154 days, indicating strong cooperativity. None of the nontransgenic mice or the p53-172H transgenic mice developed tumors within this time period. Tumors arising in the p53-172H/neu bitransgenic mice were anaplastic and aneuploid and exhibited increased apoptosis, in distinction to tumors arising in p53-null mice, in which apoptosis is diminished. Further experiments address potential mechanisms of cooperativity between the two transgenes. In these bitransgenic mice, we have recapitulated two common genetic lesions that occur in human breast cancer and have shown that p53 mutation is an important cooperating event in neu-mediated oncogenesis.  相似文献   

13.
Genomic instability is often caused by mutations in genes that are involved in DNA repair and/or cell cycle checkpoints, and it plays an important role in tumorigenesis. Poly(ADP-ribose) polymerase (PARP) is a DNA strand break-sensing molecule that is involved in the response to DNA damage and the maintenance of telomere function and genomic stability. We report here that, compared to single-mutant cells, PARP and p53 double-mutant cells exhibit many severe chromosome aberrations, including a high degree of aneuploidy, fragmentations, and end-to-end fusions, which may be attributable to telomere dysfunction. While PARP(-/-) cells showed telomere shortening and p53(-/-) cells showed normal telomere length, inactivation of PARP in p53(-/-) cells surprisingly resulted in very long and heterogeneous telomeres, suggesting a functional interplay between PARP and p53 at the telomeres. Strikingly, PARP deficiency widens the tumor spectrum in mice deficient in p53, resulting in a high frequency of carcinomas in the mammary gland, lung, prostate, and skin, as well as brain tumors, reminiscent of Li-Fraumeni syndrome in humans. The enhanced tumorigenesis is likely to be caused by PARP deficiency, which facilitates the loss of function of tumor suppressor genes as demonstrated by a high rate of loss of heterozygosity at the p53 locus in these tumors. These results indicate that PARP and p53 interact to maintain genome integrity and identify PARP as a cofactor for suppressing tumorigenesis.  相似文献   

14.
OBJECTIVE: To determine the usefulness of proliferating cell nuclear antigen (PCNA), p53 protein expression and transformed lymphocyte count (TLC) as adjunctive tests to differentiate indolent small B-cell lymphoma from large cell lymphoma in fine needle aspiration biopsies. STUDY DESIGN: Aspirates of lymphoproliferative disorders from April 1993 to January 1997 were reviewed. The percentage of TLCs was determined on the Papanicolaou smear. The percentage and intensity of p53 and PCNA immunocytochemical staining was evaluated on cell block sections. These results were compared and correlated with the final diagnoses based on available morphology, flow cytometry and clinical history. RESULTS: There were 40 cases of non-Hodgkin's lymphoma and 12 reactive lymph nodes. Adequate cell blocks were available on 16 large cell lymphomas, 7 grade 1-2 follicular center cell lymphomas, 6 mucosal associated lymphoid tissue lymphomas, 2 small lymphocytic lymphomas and 2 mantle cell lymphomas. Average TLC and p53 nuclear staining was highest in large cell lymphomas (57% TLC and 24% p53), followed by grades 1 and 2 follicular lymphomas (14% TLC and 15% p53) and lowest in other indolent lymphomas (< 10% TLC and < 1% p53). Average PCNA staining was highest in large cell lymphomas (46%) and lowest in small lymphocytic lymphomas (7%); however, TLC was the best parameter for differentiating large cell lymphoma from indolent small B-cell lymphoma. CONCLUSION: TLC differentiated large cell lymphoma from indolent small B-cell lymphoma better than either p53 or PCNA alone or in combination. Significant overlap between categories limits usefulness of these immunocytochemical stains for differentiating these entities.  相似文献   

15.
  相似文献   

16.
17.
Infection of mice with live influenza A virus induces cytolytic T lymphocytes (CTL) as well as B cells capable of reacting with target cells infected with the appropriate virus subtypes. In Balb/c mice CTL reveal a broad cross-reactivity against all influenza A substrains known. In contrast B-cell responses are restricted to virus subtypes which are identical in regard to the hemagglutinin (HA) of the sensitizing virus. Reinfection with homologous live influenza virus within 6–7 months results in no or in a drastically diminished B-cell response as compared to a priming situation and fails to induce CTL. Inability to induce secondary immunity to homologous influenza virus was correlated with the presence of circulating antibodies specific for the sensitizing virus subtype. Cross-boosting with heterologous live influenza A virus induces homotypic and heterotypic CTL and B-cell immunity with characteristics of secondary responses. Preparations of inactivated intact influenza virus are unable to reactivate CTL memory in vivo but induce B-cell activity. B-cell responses stimulated by this procedure are restricted to the boosting virus. Attenuated viruses, which are produced by recombination of wild strains with cold-adapted strains, are also efficient in stimulating in vivo CTL memory if used for cross-boosting.  相似文献   

18.
Barrett's esophagus (BE) is a metaplastic disorder in which specialized columnar epithelium replaces healthy squamous epithelium (intestinal metaplasia). Even though its pathophysiology and the steps of its neoplastic progression are not completely understood, BE can be considered as a complication of gastroesophageal reflux disease (GERD). Given that esophageal adenocarcinoma, which is continually increasing in the Western world, still has a poor prognosis and suffers from late diagnosis, and because BE is a precancerous lesion, there is a strong need for good molecular markers of malignant progression in Barrett's metaplasia (BM). The aim of this review is to examine the published data regarding the role that assessment of p53 may play in the management of BE, trying to understand if it may be a useful marker to early diagnose BE malignant transformation.  相似文献   

19.
20.
The complex process of cell immortalization and transformation is likely to involve the inactivation of growth regulatory genes. Mutations (deletions, missense mutations) in the p53 gene are the most frequently observed genetic alteration in human tumors, making p53 a candidate for a cellular protein involved in the control of cell growth. Two recent studies have examined the role of p53 in immortalization and tumorigenesis. In the first study, p53 expression was examined in both mortal and immortal chick embryo fibroblasts. All mortal clones expressed p53 but the loss of wild-type p53 expression was observed in every immortal cell line examined. In the second study, a line of mice carrying two null p53 alleles has been created and characterized. Although these mice develop normally, they show a predisposition to develop a variety of neoplasms at an early age (< 6 months). Although it is unclear whether p53 regulates the same, different, or overlapping pathways in the two experimental systems, these data demonstrate that p53 function is critical for the maintenance of normal growth control and support the current classification of p53 as a growth suppressive or tumor suppressor gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号