首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Virus-specific cellular immune responses play a critical role in virus clearance during acute or chronic HBV infection. Currently, the commercially available HBV vaccine is combined with alum adjuvant, which stimulates mainly Th2 immune responses. Therefore, development of new therapeutic HBV vaccine adjuvants and immune strategies that also promote Th1 and CTL responses is urgently needed.

Methodology/Principal findings

To improve the immunity induced by the novel HBSS1 HBV vaccine, we evaluated the ability of adjuvants, including alum, CpG and polyriboinosinic polyribocytidylic acid [poly(I:C)], to enhance the response when boosted with the recombinant adenoviral vector vaccine rAdSS1. The immune responses to different adjuvant combinations were assessed in C57BL/6 mice by enzyme-linked immunosorbent assay (ELISA), ELISpot and cytokine release assays. Among the combinations tested, a HBV protein particle vaccine with CpG/alum and poly(I:C)/alum priming combinations accelerated specific seroconversion and produced high antibody (anti-PreS1, anti-S antibody) titres with a Th1 bias. After boosting with recombinant adenoviral vector vaccine rAdSS1, both groups produced a strong multi-antigen (S and PreS1)-specific cellular immune response. HBSS1 immunisation with poly(I:C)/alum priming also generated high-level CD4+ and CD8+ T cell responses in terms of Th1 cytokines (IFN-γand IL-2).

Conclusions

The protein-vaccine HBSS1 with mixed poly(I:C)/alum adjuvant priming, followed by a rAdSS1 vaccine boost, maximises specific antibody and Th1-biased cellular immune responses. This regime might prove useful in the development of HBV therapeutic vaccines. Furthermore, this promising strategy might be applied to vaccines against other persistent infections, such as human immunodeficiency virus and tuberculosis.  相似文献   

2.
Hepatitis B virus (HBV) core antigen (HBcAg)-specific CD4+ T-cell responses are believed to play an important role in the control of human HBV infection. In the present study, HBcAg-specific, HLA-DR13*-restricted CD4+ Th1-type T-cell clones were generated which secreted both gamma interferon and tumor necrosis factor alpha after in vitro antigen stimulation. These HBcAg-specific CD4+ Th1-type T cells were able to lyse HBc peptide-loaded Epstein-Barr virus-transformed lymphoblastoid target cells in vitro. To examine whether these HLA-DR13*-restricted human CD4+ Th1 T cells also display the same cytotoxic effects in vivo, we transferred peripheral blood leukocytes (PBL) derived from HBV-infected donors or an HBV-naïve donor sharing the DR13*, together with the HBcAg-specific CD4+ Th1-type T cells and HBcAg, directly into the spleen of optimally conditioned Nod/LtSz-Prkdcscid/Prkdcscid (NOD/SCID) mice. The production of both secondary anti-HBc-immunoglobulin G (anti-HBc-IgG) and primary HBcAg-binding IgM in hu-PBL-NOD/SCID mice was drastically inhibited by HBcAg-specific CD4+ Th1-type T cells. No inhibition was observed when CD4+ Th1 cells and donor PBL did not share an HLA-DR13. These results suggest that HBcAg-specific CD4+ Th1 T cells may be able to lyse HBcAg-binding, or -specific, B cells that have taken up and presented HBcAg in a class II-restricted manner. Thus, HBcAg-specific CD4+ Th1-type T cells can modulate the function and exert a regulatory role in deleting HBcAg-binding, or -specific, human B cells in vivo, which may be of importance in controlling the infection.

The hepatitis B virus (HBV) is a small, enveloped virus with a circular, partially double-stranded DNA genome. It is a major cause of infectious liver disease throughout the world. The majority of acutely infected adults recover from the disease, whereas 5 to 10% become persistently infected and develop chronic liver disease. In contrast to adult infection, neonatally transmitted HBV infection is rarely cleared, and the majority of those infants become chronically infected.Most studies suggest that HBV is not directly cytopathic and immune responses to HBV antigens are responsible for the viral clearance and disease pathogenesis. Antiviral CD8+ T cells are believed to play a major role in the control of HBV infection by virtue of their capacity to identify and kill virus-infected cells (8). Recent studies suggest that viral clearance requires additional cytotoxic T lymphocyte (CTL) functions besides their ability to kill infected cells and that noncytopathic antiviral mechanisms are considered very important in the control of disease (19, 20). It was recently shown that HBV core antigen (HBcAg)-binding B cells are common even in a naive host (5, 27). HBcAg-binding B cells, which take up HBcAg and present viral peptides through class II molecules, may represent up to 15% of the B-cell repertoire in a naive host (5, 27). This suggests that HBV has targeted HBcAg to B cells, although the importance of this targeting is still unknown.During acute self-limited HBV infection, a vigorous HBcAg-specific HLA class II-restricted CD4+ T-cell response is observed, while the HLA class II-restricted, HBV surface antigen (HBsAg)-specific response appears much less vigorous (14, 25). The HBcAg-specific fraction of peripheral blood T cells in acute self-limited hepatitis B selectively secrete Th1-type cytokines, suggesting that Th1-mediated effects may contribute not only to liver cell injury but probably also to recovery from disease and successful control of infection (35). It is becoming increasingly evident that the HBcAg-specific CD4+ T-cell response may play an important role in viral clearance by providing help for the growth and maturation of B cells and CD8+ T cells, by being directly cytotoxic for the infected targets or by modulating the viral replication via secretion of cytokines such as gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) (29).HBsAg-specific HLA class II-restricted CD4+ cytotoxic T-cell clones have been isolated from the liver of chronic active hepatitis B patients and from the peripheral blood leukocytes (PBL) of HBsAg-vaccinated individuals (4, 7). However, the role of HLA class II-restricted HBsAg- and HBcAg-specific CD4+ cytotoxic T cells in the HBV infection, protection, and pathogenesis is not well-defined. There is no direct way to demonstrate in humans that the HLA class II-restricted CD4+ cytotoxic T cells, which have been described in several human viral infections (4, 16, 24, 43), have the same cytotoxic capacity in vivo as in vitro.In the present study, HBcAg-specific HLA class II-restricted CD4+ T-cell clones were generated from the PBL of a DR13-positive subject that had fully recovered from an acute self-limited HBV infection. These HBcAg-specific CD4+ Th1-type T cells partially expressed CD56 and were able to lyse the human target cells (Epstein-Barr virus [EBV]-transformed lymphoblastoid cell lines [LCLs]) in vitro. In vivo experiments in the hu-PBL-NOD/SCID mouse model revealed that HBcAg-specific CD4+ Th1 T cells drastically inhibited the production of HBcAg-specific antibodies, suggesting that these cells were able to specifically lyse the HBcAg-specific human B cells that had taken up and processed HBcAg. These CD4+ Th1-type cytotoxic T cells may exert a regulatory role on the HBcAg-specific antibody production by deleting HBcAg-specific (or -binding) B cells in vivo during natural HBV infection and thus contribute to the successful control of virus and recovery of HBV infection of DR13-positive patients.  相似文献   

3.
近年来,用8型腺相关病毒携带1.3拷贝HBV(Hepatitis B virus)基因组建立的HBV持续感染小鼠模型受到越来越多的关注。本研究比较了除AAV8之外的其他4种血清型重组腺相关病毒(Recombinant adeno-associated virus,rAAV)建立乙肝小鼠模型效果。首先,将携带1.3拷贝ayw亚型HBV基因组的1型、2型、5型、8型、9型腺相关病毒分别以1×10~(11) vg/只(Viral genome,vg)的剂量尾静脉注射C57BL/6J小鼠;利用ELISA方法监测小鼠血清中HBeAg和HBsAg表达水平;用定量PCR方法检测小鼠血清和肝脏中HBV DNA拷贝数;用免疫组化方法检测小鼠肝脏中HBc Ag的表达;用HE染色检测小鼠肝脏病理变化。结果显示,在持续8周中,5组小鼠血清中都检测到HBeAg和HBsAg的表达,血清和肝脏中均检测到HBV DNA的存在。HBeAg、HBsAg、HBV DNA表达水平高低依次为AAV8AAV9AAV1AAV5AAV2。5组小鼠用免疫组化方法都检测到肝脏中HBcAg表达,HE染色病理检测均观察到不同程度的肝损伤。本研究扩大了能用于建立乙肝小鼠持续感染模型可选择的AAV载体种类,发现虽然AAV1、2、5、9的建模效果不如AAV8,但它们都可以介导建立持续感染的乙肝小鼠模型,建模效果依次为AAV8AAV9AAV1AAV5AAV2。其中AAV9介导的建模效果与AAV8载体最为接近,可以替代AAV8载体用于有效地建立HBV持续感染的小鼠模型。  相似文献   

4.
H Chen  X Chuai  Y Deng  B Wen  W Wang  S Xiong  L Ruan  W Tan 《PloS one》2012,7(9):e43730

Background

A therapeutic vaccine for chronic hepatitis B virus (HBV) infection that enhances virus-specific cellular immune responses is urgently needed. The “prime–boost” regimen is a widely used vaccine strategy against many persistence infections. However, few reports have addressed this strategy applying for HBV therapeutic vaccine development.

Methodology/Principal Findings

To develop an effective HBV therapeutic vaccine, we constructed a recombinant vaccinia virus (Tiantan) containing the S+PreS1 fusion antigen (RVJSS1) combined with the HBV particle-like subunit vaccine HBVSS1 to explore the most effective prime–boost regimen against HBV. The immune responses to different prime–boost regimens were assessed in C57BL/C mice by ELISA, ELISpot assay and Intracellular cytokine staining analysis. Among the combinations tested, an HBV protein particle vaccine priming and recombinant vaccinia virus boosting strategy accelerated specific seroconversion and produced high antibody (anti-PreS1, anti-S antibody) titres as well as the strongest multi-antigen (PreS1, and S)-specific cellular immune response. HBSS1 protein prime/RVJSS1 boost immunization was also generated more significant level of both CD4+ and CD8+ T cell responses for Th1 cytokines (TNF-α and IFN-γ).

Conclusions

The HBSS1 protein-vaccine prime plus RVJSS1 vector boost elicits specific antibody as well as CD4 and CD8 cells secreting Th1-like cytokines, and these immune responses may be important parameters for the future HBV therapeutic vaccines.  相似文献   

5.
旨在以乙肝病毒 (HBV) 的主要结构蛋白-表面蛋白 (HBsAg) 和核心蛋白 (HBcAg) 作为抗原设计DNA疫苗,研究热休克蛋白HSP70和gp96作为新型免疫佐剂增强疫苗的细胞免疫和体液免疫水平。利用酶联免疫斑点实验、流式细胞内因子染色、3H-TdR实验、酶联免疫吸附实验技术分析,结果显示HSP70和gp96可使疫苗的细胞免疫水平提高1~6倍,提高体液免疫水平20%~60%。研究结果为设计以HSP70和gp96作为免疫佐剂的新型乙肝治疗性疫苗提供了依据。  相似文献   

6.
我们先前用rAAV8-1.3HBV静脉注射C57BL/6小鼠成功地制备了慢性乙型肝炎病毒(Hepatitis B virus,HBV)感染模型。为了探讨不同品系的小鼠对rAAV8-1.3HBV静脉注射是否具有不同反应,本研究比较了C57BL/6和BALB/c小鼠静脉注射重组病毒后外周血中HBV抗原和抗体水平、病毒载量和肝脏组织HBcAg表达情况,以及不同剂量重组病毒注射与这些指标的关系。将低(4×109 Viral genome,vg)、中(4×1010vg)和高(4×1011vg)三种剂量的rAAV8-1.3HBV通过尾静脉注射至C57BL/6和BALB/c小鼠,分别利用ELISA和荧光定量PCR方法检测血清中的HBV抗原、抗体水平以及HBV DNA,利用免疫组化检测肝脏组织HBcAg的表达。结果发现,对于C57BL/6小鼠,三种不同剂量rAAV8-1.3HBV注射均可造成100%小鼠出现HBV持续感染;血清HBsAg、HBeAg和HBV DNA以及肝组织HBcAg稳定表达超过8个月,其表达水平随重组病毒注射剂量的增加而升高,高剂量注射时可造成超过40%的肝细胞感染HBV,血清中HBV DNA可达105 IU/mL以上;未检测到针对HBV的抗体。对于BALB/c小鼠,三种不同剂量rAAV8-1.3HBV注射也可造成100%小鼠出现HBV持续感染;血清HBeAg和HBV DNA以及肝组织HBcAg稳定表达超过8个月,但是血清HBsAg在重组病毒注射2周之后显著下降甚至消失;在中剂量注射组的BALB/c小鼠血清中检测到低水平的Anti-HBs;血清HBeAg和肝组织HBcAg的表达水平随重组病毒注射剂量的增加而增高,并且各剂量组表达水平均高于C57BL/6小鼠,高剂量注射时可造成超过50%的肝细胞感染HBV。本研究表明,低至4×109 vg剂量的rAAV8-1.3HBV注射即可造成C57BL/6和BALB/c两种品系小鼠出现HBV持续感染,并且HBV复制水平随重组病毒注射剂量增加而增高;BALB/c小鼠对HBV的免疫反应强于C57BL/6小鼠,可以产生针对HBsAg的体液免疫反应而使血清HBsAg转阴,但无法清除携带HBV的肝细胞。  相似文献   

7.
HBsAg clearance is associated with clinical cure of chronic hepatitis B virus (HBV) infection. Quantification of HBsAg may help to predict HBsAg clearance during the natural course of HBV infection and during antiviral therapy. Most studies investigating quantitative HBsAg were performed in HBV mono-infected patients. However, the immune status is considered to be important for HBsAg decline and subsequent HBsAg loss. HIV co-infection unfavorably influences the course of chronic hepatitis B. In this cross-sectional study we investigated quantitative HBsAg in 173 HBV/HIV co-infected patients from 6 centers and evaluated the importance of immunodeficiency and antiretroviral therapy. We also compared 46 untreated HIV/HBV infected patients with 46 well-matched HBV mono-infected patients. HBsAg levels correlated with CD4 T-cell count and were higher in patients with more advanced HIV CDC stage. Patients on combination antiretroviral therapy (cART) including nucleos(t)ide analogues active against HBV demonstrated significant lower HBsAg levels compared to untreated patients. Importantly, HBsAg levels were significantly lower in patients who had a stronger increase between nadir CD4 and current CD4 T-cell count during cART. Untreated HIV/HBV patients demonstrated higher HBsAg levels than HBV mono-infected patients despite similar HBV DNA levels. In conclusion, HBsAg decline is dependent on an effective immune status. Restoration of CD4 T-cells during treatment with cART including nucleos(t)ide analogues seems to be important for HBsAg decrease and subsequent HBsAg loss.  相似文献   

8.
9.

Background

The decline in hepatitis B virus surface antigen (HBsAg) may be an early predictor of the viral efficacy of Hepatitis B virus (HBV) therapy. The HBsAg levels obtained by different immunoassays now need comparing and the relationships between levels of HBsAg and HBV DNA alongside HBsAg and genotype must be evaluated.

Methodology/Principal Findings

HBsAg levels were compared among 80 patients using the Abbott Architect assay, a commercial immunoassay approved for HBsAg detection and quantitation, and three other assays derived from immunoassays approved for HBsAg detection (manufactured by Diasorin, Bio-Rad and Roche). Good correlation was found between the Abbot vs. Diasorin, Bio-Rad and Roche assays with narrow 95% limits of agreement and small mean differences: −0.06 to 0.11, −0.09 log10 IU/mL; −0.57 to 0.64, −0.04 log10 IU/mL; −0.09 to 0.45, −0.27 log10 IU/mL, respectively. These agreements were not affected by genotypes A or D. HBsAg was weakly correlated with HBV DNA, whatever the HBsAg assay used: Abbott, ρ = 0.36 p = 0.001, Diasorin ρ = 0.34, p = 0.002; Bio-Rad ρ = 0.37, p<0.001; or Roche ρ = 0.41, p<0.001. This relationship between levels of HBsAg and HBV DNA seemed to depend on genotypes. Whereas HBsAg (Abbott assay) tended to correlate with HBV DNA for genotype A (ρ = 0.44, p = 0.02), no such correlation was significant for genotypes D (ρ = 0.29, p = 0.15).

Conclusion/Significance

The quantitation of HBsAg in routine clinical samples is comparable between the reference assay and the adapted assays with acceptable accuracy limits, low levels of variability and minimum discrepancy. While HBsAg quantitation is not affected by HBV genotype, the observed association between levels of HBsAg and HBV DNA seems genotype dependent.  相似文献   

10.
BACKGROUND: We previously reported successful therapeutic immunization in a chimpanzee having a relatively low viral load, which was immunized with recombinant plasmid hepatitis B surface antigen (HBsAg) DNA and boosted with recombinant HBsAg encoding canarypox virus. In the present study, we attempted to confirm these findings in an animal with a high virus load. METHODS AND RESULTS: We tested three immunization strategies successively over a 3-year period. In the first of these, we administered four monthly injections of DNA encoding HBsAg + PreS2 + hepatitis B core antigen (HBcAg) + DNA encoding interleukin (IL)-12, (given 3 days later), and boosted with canarypox expressing all of the above HBV genes 6 months after initial immunization. No reduction in viral load was observed. In the second trial, we administered lamivudine for 8 weeks, and then began monthly DNA-based immunization with plasmids expressing the above viral genes; however, viral loads rebounded 1 week after termination of lamivudine therapy. In a third trial, we continued lamivudine therapy for 30 weeks and immunized with vaccinia virus expressing the above viral genes 18 and 23 weeks after the start of lamivudine therapy. Again viral loads rebounded shortly after cessation of lamivudine treatment. Analysis of cell-mediated immune responses, and their avidity, revealed that DNA-based immunization produced the strongest enhancement of high avidity T-cell responses, while recombinant vaccinia immunization during lamivudine therapy enhanced low avidity responses only. The strongest low and high avidity responses were directed to the middle surface antigen. CONCLUSIONS: Three strategies for therapeutic immunization failed to control HBV viremia in a chronically infected chimpanzee with a high viral load.  相似文献   

11.

Background:

In patients who are hepatitis B virus (HBV) DNA-positive, but HBV surface antigen (HBsAg) -negative, the infection is referred to as occult hepatitis B infection (OBI). Occult HBV infection is harmful when other liver diseases are present, and can aggravate liver damage in in patients with chronic liver diseases. In human immunodeficiency virus (HIV) infection the suppression of viral replication by the immune system might be inactivated, and classical HBV infection in OBI patients may occur. Health care professionals should be aware of OBI in HIV patients. The routine test for HBV infection in Iran is the enzyme-linked immunosorbent assay for the HBV surface antigen (ELISA HBsAg); therefore, the aim of this study was to evaluate the prevalence of OBI in Iranian HIV patients.

Methods:

This cross-sectional study was conducted in 2012 on sera from all the known and accessible HIV patients in Jahrom and Fassa, two cities in southern Iran. All samples were tested for the HBsAg, HBV core antibody (HBcAb). All the results were analyzed using SPSS.

Results:

Of the 91 patients, seven (7.7%) were HBsAg-positive and forty-five (49.5%) were HBcAb-positive. In patients with negative HBsAg (84 patients), 39 (46.4%) were HBcAb positive and 53 (63%) were positive for HBV DNA.

Conclusion:

The prevalence of HBV infection is relatively high in HIV patients, and more accurate tests than those presently in use should be used for diagnosis.Key Words: Hepatitis B, HIV infection, Occult hepatitis  相似文献   

12.

Background

Hepatitis B virus (HBV) infection is endemic in South Africa however, there is limited data on the degree of liver disease and geographic variation in HIV/HBV coinfected individuals. In this study, we analysed data from the CIPRA-SA ‘Safeguard the household study’ in order to assess baseline HBV characteristics in HIV/HBV co-infection participants prior to antiretroviral therapy (ART) initiation.

Methods

812 participants from two South African townships Soweto and Masiphumelele were enrolled in a randomized trial of ART (CIPRA-SA). Participants were tested for hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), and HBV DNA. FIB-4 scores were calculated at baseline.

Results

Forty-eight (5.9%) were HBsAg positive, of whom 28 (58.3%) were HBeAg positive. Of those with HBV, 29.8% had an HBV DNA<2000 IU/ml and ALT<40 IU/ml ; 83.0% had a FIB-4 score <1.45, consistent with absent or minimal liver disease. HBV prevalence was 8.5% in Masiphumelele compared to 3.8% in Soweto (relative risk 2.3; 95% CI: 1.3–4.0). More participants in Masiphumelele had HBeAg-negative disease (58% vs. 12%, p = 0.002) and HBV DNA levels ≤2000 IU/ml, (43% vs. 6% p<0.007).

Conclusion

One third of HIV/HBV co-infected subjects had low HBV DNA levels and ALT while the majority had indicators of only mild liver disease. There were substantial regional differences in HBsAg and HbeAg prevalence in HIV/HBV co-infection between two regions in South Africa. This study highlights the absence of severe liver disease and the marked regional differences in HIV/HBV co-infection in South Africa and will inform treatment decisions in these populations.  相似文献   

13.

Purpose

T-cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3) plays an important role in regulating T cells in hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC). However, few researches have reported the association of Tim-3 genetic variants with susceptibility and progression of HBV infection. In this study, we focused on the association of Tim-3 polymorphisms with HBV infection, HBsAg seroclearance and hepatocellular carcinoma.

Methods

A total of 800 subjects were involved in this study. Four groups were studied here, including HBV, HBsAg seroclearance, HBV-associated HCC and healthy controls. Three single-nucleotide polymorphisms (SNPs) of Tim-3, rs246871, rs25855 and rs31223 were genotyped to analyze the association of Tim-3 polymorphisms with susceptibility and disease progression of HBV infection.

Results

Our study found that rs31223 and rs246871 were associated with disease progression of HBV infection, while none of the three SNPs was relevant to HBV susceptibility. The minor allele “C” of rs31223 was found to be associated with an increased probability of HBsAg seroclearance (P = 0.033) and genotype “CC” of rs246871 to be associated with an increased probability of HBV-associated HCC (P = 0.007). In accordance, haplotypic analysis of the three polymorphisms also showed that the haplotype block CGC* and TGC* were significantly associated with HBsAg seroclearance (P<0.05) while haplotype block CAT*, CGT*, TAC* and TGT* were significantly associated with HBV-associated HCC (all P<0.05).

Conclusions

Genetic variants of Tim-3 have an important impact on disease progression of HBV infection. With specific Tim-3 polymorphisms, patients infected with HBV could be potential candidates of HCC and HBsAg seroclearance.  相似文献   

14.

Background

The impact of exposure to multiple pathogens concurrently or consecutively on immune function is unclear. Here, immune responses induced by combinations of the bacterium Salmonella Typhimurium (STm) and the helminth Nippostrongylus brasiliensis (Nb), which causes a murine hookworm infection and an experimental porin protein vaccine against STm, were examined.

Methodology/Principal Findings

Mice infected with both STm and Nb induced similar numbers of Th1 and Th2 lymphocytes compared with singly infected mice, as determined by flow cytometry, although lower levels of secreted Th2, but not Th1 cytokines were detected by ELISA after re-stimulation of splenocytes. Furthermore, the density of FoxP3+ T cells in the T zone of co-infected mice was lower compared to mice that only received Nb, but was greater than those that received STm. This reflected the intermediate levels of IL-10 detected from splenocytes. Co-infection compromised clearance of both pathogens, with worms still detectable in mice weeks after they were cleared in the control group. Despite altered control of bacterial and helminth colonization in co-infected mice, robust extrafollicular Th1 and Th2-reflecting immunoglobulin-switching profiles were detected, with IgG2a, IgG1 and IgE plasma cells all detected in parallel. Whilst extrafollicular antibody responses were maintained in the first weeks after co-infection, the GC response was less than that in mice infected with Nb only. Nb infection resulted in some abrogation of the longer-term development of anti-STm IgG responses. This suggested that prior Nb infection may modulate the induction of protective antibody responses to vaccination. To assess this we immunized mice with porins, which confer protection in an antibody-dependent manner, before challenging with STm. Mice that had resolved a Nb infection prior to immunization induced less anti-porin IgG and had compromised protection against infection.

Conclusion

These findings demonstrate that co-infection can radically alter the development of protective immunity during natural infection and in response to immunization.  相似文献   

15.
乙型肝炎病毒 (HBV)感染是我国常见病及多发病。HBV难以清除的原因之一就是机体的免疫功能障碍。目前虽然基因重组HBV表面抗原 (HBsAg)疫苗预防HBV感染取得了较好的效果 ,但基因重组HBsAg疫苗主要能诱导特异性体液免疫 ,不能刺激机体的细胞免疫应答。近年来发现基因疫苗可诱导机体产生细胞及体液免疫反应 ,特别是诱导细胞免疫反应的能力优于蛋白、多肽类疫苗 ,更适应于慢性病毒感染的预防与治疗[1,2 ] 。为了探讨应用HBV基因疫苗预防HBV感染的可能性 ,本文构建了HBV全S基因和HBsAg基因疫苗 ,观察和比…  相似文献   

16.

Background & Aims

The immune impairment characterizing chronic hepatitis B (cHBV) infection is thought to be the consequence of persistent exposure to viral antigens. However, the immune correlates of different clinical stages of cHBV and their relation with different levels of HBsAg have not been investigated. The aim of the present study was to evaluate the relationship between HBV-specific T cells response and the degree of in vivo HBV control and HBsAg serum levels in HBeAg-HBeAb+ cHBV.

Methods

Peripheral blood mononuclear cells from 42 patients with different clinical profiles (treatment-suppressed, inactive carriers and active hepatitis) of cHBV, 6 patients with resolved HBV infection and 10 HBV-uninfected individuals were tested with overlapping peptides spanning the entire HBV proteome. The frequency and magnitude of HBV-specific T cell responses was assessed by IFNγ ELISPOT assay. Serum HBsAg was quantified with a chemiluminescent immunoassay.

Results

The total breadth and magnitude of HBV-specific T cell responses did not differ significantly between the four groups. However, inactive carriers targeted preferentially the core region. In untreated patients, the breadth of the anti-core specific T cell response was inversely correlated with serum HBsAg concentrations as well as HBV-DNA and ALT levels and was significantly different in patients with HBsAg levels either above or below 1000 IU/mL. The same inverse association between anti-core T cell response and HBsAg levels was found in treated patients.

Conclusions

Different clinical outcomes of cHBV infection are associated with the magnitude, breadth and specificity of the HBV-specific T cell response. Especially, robust anti-core T cell responses were found in the presence of reduced HBsAg serum levels, suggesting that core-specific T cell responses can mediate a protective effect on HBV control.  相似文献   

17.

Background

Hepatitis B virus (HBV) infection remains a severe public health problem. Investigating its prevalence and trends is essential to prevention.

Methods

To evaluate the effectiveness of HBV vaccination under the 1992 Intervention Program for infants and predicted HBV prevalence trends under the 2011 Program for all ages. We conducted a community-based investigation of 761,544 residents of 12 counties in Zhejiang Province selected according to their location, population density, and economic development. The HBV prevalence trends were predicted by a time-shifting approach. HBV surface antigen (HBsAg) and alanine amino transferase (ALT) were determined.

Results

Of the 761,544 persons screened for HBsAg, 54,132 were positive (adjusted carrier rate 6.13%); 9,455 had both elevated ALT and a positive HBsAg test (standardized rate 1.18%). The standardized HBsAg carrier rate for persons aged ≤20 years was 1.51%. Key factors influencing HBV infection were sex, age, family history, drinking, smoking, employment as a migrant worker, and occupation. With the vaccination program implemented in 2011, we predict that by 2020, the HBsAg carrier rate will be 5.27% and that for individuals aged ≤34 years will reach the 2% upper limit of low prevalence according to the WHO criteria, with a standardized rate of 1.86%.

Conclusions

The national HBV vaccination program for infants implemented in 1992 has greatly reduced the prevalence of HBV infection. The 2011 program is likely to reduce HBV infection in Zhejiang Province to a low moderate prevalence, and perinatal transmission is expected to be controlled by 2020.  相似文献   

18.
Hepatitis B virus (HBV) expresses two structural forms of the nucleoprotein, the intracellular nucleocapsid (hepatitis core antigen [HBcAg]) and the secreted nonparticulate form (hepatitis e antigen [HBeAg]). The aim of this study was to evaluate the ability of HBcAg- and HBeAg-specific genetic immunogens to induce HBc/HBeAg-specific CD4+/CD8+ T-cell immune responses and the potential to induce liver injury in HBV-transgenic (Tg) mice. Both the HBcAg- and HBeAg-specific plasmids primed comparable immune responses. Both CD4+ and CD8+ T cells were important for priming/effector functions of HBc/HBeAg-specific cytotoxic T-lymphocyte (CTL) responses. However, a unique two-step immunization protocol was necessary to elicit maximal CTL priming. Genetic vaccination did not prime CTLs in HBe- or HBc/HBeAg-dbl-Tg mice but elicited a weak CTL response in HBcAg-Tg mice. When HBc/HBeAg-specific CTLs were adoptively transferred into HBc-, HBe-, and HBc/HBeAg-dbl-Tg mice, the durations of the liver injury and inflammation were significantly greater in HBeAg-Tg recipient mice than in HBcAg-Tg mice. Importantly, liver injury in HBc/HBeAg-dbl-Tg mice was similar to the injury observed in HBeAg-Tg mice. Loss of HBeAg synthesis commonly occurs during chronic HBV infection; however, the mechanism of selection of HBeAg-negative variants is unknown. The finding that hepatocytes expressing wild-type HBV (containing both HBcAg and HBeAg) are more susceptible to CTL-mediated clearance than hepatocytes expressing only HBcAg suggest that the HBeAg-negative variant may have a selective advantage over wild-type HBV within the livers of patients with chronic infection during an immune response and may represent a CTL escape mutant.  相似文献   

19.
We have previously reported the establishment and preliminary characterization of polyclonal hepatitis B virus (HBV) nucleoprotein (HBcAg)-specific CD4+ and CD8+ T cell lines derived from the hepatic lymphomononuclear cell infiltrate of several patients with chronic active hepatitis B. The isolated subsets from these lines were specifically activated by HBcAg and displayed antigen-specific help and suppression with respect to proliferation of the alternate subset. One of these lines was recently cloned by limiting dilution, and four HBcAg-specific CD3+ CD4+ CD8-DR+ T cell lines were produced that had a 95.3% likelihood of monoclonality. Antigenic specificity was confirmed by dose-dependent, HLA class II (DR)-restricted proliferation in response to recombinant and human serum-derived HBcAg and the lack of proliferation to HBV envelope antigens (HBsAg and pre-S(2)Ag). All cloned lines were interleukin 2 dependent, produced interferon-gamma in an antigen-specific manner, and provided antigen-specific help to autologous B cells with respect to anti-HBc production. We conclude that HBcAg-specific, HLA-class II restricted helper T cells capable of inducing antigen-specific functional responses by autologous B lymphocytes and T lymphocytes are present at the site of viral antigen synthesis and hepatocellular injury in HBV infection.  相似文献   

20.
BACKGROUND: Many clinical trials show that DNA vaccine potency needs to be greatly enhanced. We have reported that the N-terminal fragment of glycoprotein 96 (gp96) is able to produce an adjuvant effect for production of cytotoxic T-lymphocytes (CTLs) with hepatitis B virus (HBV)-specific peptides. Here, we report a new strategy for HBV DNA vaccine design using a partial gp96 sequence. MATERIALS AND METHODS: We linked the N-terminal 1-355aa (N355) of gp96 to HBV genes encoding for structural proteins, the major S and middle S2S envelope proteins and the truncated core HBcAg (1-149aa). ELISPOT, tetramer staining and intracellular IFN-gamma assay were performed to analyze the induced cellular immune responses of our DNA constructs in BALB/c mice and HLA-A2 transgenic mice. The relative humoral immune responses were analyzed in different IgG isotypes. RESULTS: The fusion genes induced 2- to 6-fold higher HBV-specific CD8(+) T cells as compared to the antigens alone. There was an approximate 10-fold decrease in the humoral immune responses with fusion genes based on HBV envelope proteins. Interestingly, the decreased humoral immune responses were not observed when antigens and plasmid encoding N355 were co-delivered. However, an approximate 20-fold higher antibody level was induced when linking N355 to a truncated HBcAg. Immunization by intramuscular injection resulted in predominantly IgG2a antibodies, which indicated that these vaccines preferentially prime Th1 responses. CONCLUSIONS: We constructed highly immunogenic fusions by linking the N-terminal fragment of gp96 to HBV antigens. Our results imply that the N-terminal fragment of gp96 may be used as a molecular adjuvant to enhance the potency of DNA vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号