首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
During long-term research on bottlenose dolphins (Tursiops sp.) in Shark Bay, Western Australia, several individuals were observed carrying sponges, Echinodictyum mesenterinum, on their rostra. Over multiple years, five regularly sighted individuals were usually carrying sponges when encountered (67–100% of encounters). Four additional regularly sighted individuals were observed with sponges just one time each. All five individuals that routinely carried sponges were female. Two of the anomalous, one-time carriers were female, one was likely female, and one was male. Most observations of sponge carrying occurred within a restricted area, a relatively deep water channel (8–10 m deep). Surface observations of sponge carrying, including focal animal observations, revealed a stereotyped surfacing and diving pattern, and occasional indications of prey consumption. Three hypotheses are considered regarding the function of sponge carrying: 1. dolphins were playing with the sponges; 2. the sponges contain some compound of use to the dolphins (e.g. for medicinal purposes); and 3. the sponges were used as a tool to aid in foraging. The foraging tool hypothesis is best supported, but the exact manner in which sponges are used remains to be discovered. Sponge carrying is a behavioural specialization, probably involving foraging, and regularly engaged in by only a small proportion of female dolphins in Shark Bay.  相似文献   

2.
We used playback presentations to free-flying bats of 3 species to assess the influence of echolocation call design and foraging strategy on the role of echolocation calls in communication. Near feeding sites over water, Myotis lucifugus and M. yumanensis responded positively only to echolocation calls of conspecifics. Near roosts, these bats did not respond before young of the year became volant, and after this responded to presentations of echolocation calls of similar and dissimilar design. At feeding sites Lasiurus borealis responded only to echolocation calls of conspecifics and particularly to “feeding buzzes”. While Myotis, particularly subadults, appear to use the echolocation calls of conspecifics to locate feeding sites, L. borealis appears to use the calls of a foraging neighbour attacking prey to identify opportunities for ‘stealing’ food.  相似文献   

3.
Culturally transmitted tool use has important ecological and evolutionary consequences and has been proposed as a significant driver of human evolution. Such evidence is still scarce in other animals. In cetaceans, tool use has been inferred using indirect evidence in one population of Indo-Pacific bottlenose dolphins (Tursiops sp.), where particular dolphins (‘spongers’) use marine sponges during foraging. To date, evidence of whether this foraging tactic actually provides access to novel food items is lacking. We used fatty acid (FA) signature analysis to identify dietary differences between spongers and non-spongers, analysing data from 11 spongers and 27 non-spongers from two different study sites. Both univariate and multivariate analyses revealed significant differences in FA profiles between spongers and non-spongers between and within study sites. Moreover, FA profiles differed significantly between spongers and non-spongers foraging within the same deep channel habitat, whereas the profiles of non-spongers from deep channel and shallow habitats at this site could not be distinguished. Our results indicate that sponge use by bottlenose dolphins is linked to significant differences in diet. It appears that cultural transmission of tool use in dolphins, as in humans, allows the exploitation of an otherwise unused niche.  相似文献   

4.
The types of echolocation signal and the auditory capacities of echolocating bats are adapted to specific acoustical constraints of the foraging areas. Bats hunting insects above the canopy use low frequencies for echolocation; this is an adaptation to prey detection over long distances. Bats foraging close to and within foliage avoid masking of insect echoes by specializing on 'fluttering target' detection. 'Gleaning' bats are adapted to the auditory detection of very faint noises generated by ground-dwelling prey, and are capable of analysing fine changes in the echo spectrum, which may indicate a stationary prey changing its posture on a substrate. This review of recent research demonstrates that, in bats, foraging ecology and audition are intricately interrelated and interdependent.  相似文献   

5.
During the last few years, the development of animal-borne still cameras and video recorders has enabled researchers to observe what a wild animal sees in the field. In the present study, we deployed miniaturized video recorders to investigate the underwater foraging behavior of Imperial cormorants (Phalacrocorax atriceps). Video footage was obtained from 12 animals and 49 dives comprising a total of 8.1 h of foraging data. Video information revealed that Imperial cormorants are almost exclusively benthic feeders. While foraging along the seafloor, animals did not necessarily keep their body horizontal but inclined it downwards. The head of the instrumented animal was always visible in the videos and in the majority of the dives it was moved constantly forward and backward by extending and contracting the neck while travelling on the seafloor. Animals detected prey at very short distances, performed quick capture attempts and spent the majority of their time on the seafloor searching for prey. Cormorants foraged at three different sea bottom habitats and the way in which they searched for food differed between habitats. Dives were frequently performed under low luminosity levels suggesting that cormorants would locate prey with other sensory systems in addition to sight. Our video data support the idea that Imperial cormorants’ efficient hunting involves the use of specialized foraging techniques to compensate for their poor underwater vision.  相似文献   

6.
Birds that forage by probing must often rely on sensory systems other than vision to detect their buried prey. Such senses may include hearing (e.g. Australian magpies (Atramidae), American robins (Turdidae)) or chemical senses/olfaction (e.g. kiwi (Apterygidae) and some shorebirds (Scolopacidae)). Probe foraging kiwi and shorebirds are also able to use vibrotactile cues to locate prey buried in the substrate at some distance from their bill‐tips (‘remote touch’). These birds possess an organ consisting of a honey‐comb of sensory pits in bone of the bill‐tips, packed with mechanoreceptive nerve ending (Herbst corpuscles). Such a bill‐tip organ has recently also been described in ibises (Threskiornithinae), but its function not elucidated. We designed a foraging experiment presenting mealworm prey to three captive Madagascar crested ibises Lophotibis cristata urschi under a variety of trial conditions to discover whether they were using remote touch, mediated by their bill‐tip organ; chemosense/olfaction; or hearing to locate buried prey. The ibises were reliant on remote touch for prey detection – the first time this sensory system has been demonstrated for this group of birds. They did not appear to use hearing or chemical senses/olfaction to aid in prey detection.  相似文献   

7.
8.
Availability of preferred salmonid prey and a sufficiently quiet acoustic environment in which to forage are critical to the survival of resident killer whales (Orcinus orca) in the northeastern Pacific. Although piscivorous killer whales rely on echolocation to locate and track prey, the relationship between echolocation, movement, and prey capture during foraging by wild individuals is poorly understood. We used acoustic biologging tags to relate echolocation behavior to prey pursuit and capture during successful feeding dives by fish-eating killer whales in coastal British Columbia, Canada. The significantly higher incidence and rate of echolocation prior to fish captures compared to afterward confirms its importance in prey detection and tracking. Extremely rapid click sequences (buzzes) were produced before or concurrent with captures of salmon at depths typically exceeding 50 m, and were likely used by killer whales for close-range prey targeting, as in other odontocetes. Distinctive crunching and tearing sounds indicative of prey-handling behavior occurred at relatively shallow depths following fish captures, matching concurrent observations that whales surfaced with fish prior to consumption and often shared prey. Buzzes and prey-handling sounds are potentially useful acoustic signals for estimating foraging efficiency and determining if resident killer whales are meeting their energetic requirements.  相似文献   

9.
Several animal species use tools for foraging, such as sticks to extract embedded arthropods and honey, or stones to crack open nuts and eggs. While providing access to nutritious foods, these behaviours may incur significant costs, such as the time and energy spent searching for, manufacturing and transporting tools. These costs can be reduced by re-using tools, keeping them safe when not needed. We experimentally investigated what New Caledonian crows do with their tools between successive prey extractions, and whether they express tool ‘safekeeping’ behaviours more often when the costs (foraging at height), or likelihood (handling of demanding prey), of tool loss are high. Birds generally took care of their tools (84% of 176 prey extractions, nine subjects), either trapping them underfoot (74%) or storing them in holes (26%)—behaviours we also observed in the wild (19 cases, four subjects). Moreover, tool-handling behaviour was context-dependent, with subjects: keeping their tools safe significantly more often when foraging at height; and storing tools significantly more often in holes when extracting more demanding prey (under these conditions, foot-trapping proved challenging). In arboreal environments, safekeeping can prevent costly tool losses, removing a potentially important constraint on the evolution of habitual and complex tool behaviour.  相似文献   

10.
Toothed whales echolocating in the wild generate clicks with low repetition rates to locate prey but then produce rapid sequences of clicks, called buzzes, when attempting to capture prey. However, little is known about the factors that determine clicking rates or how prey type and behaviour influence echolocation-based foraging. Here we study Blainville's beaked whales foraging in deep water using a multi-sensor DTAG that records both outgoing echolocation clicks and echoes returning from mesopelagic prey. We demonstrate that the clicking rate at the beginning of buzzes is related to the distance between whale and prey, supporting the presumption that whales focus on a specific prey target during the buzz. One whale showed a bimodal relationship between target range and clicking rate producing abnormally slow buzz clicks while attempting to capture large echoic targets, probably schooling prey, with echo duration indicating a school diameter of up to 4.3m. These targets were only found when the whale performed tight circling manoeuvres spending up to five times longer in water volumes with large targets than with small targets. The result indicates that toothed whales in the wild can adjust their echolocation behaviour and movement for capture of different prey on the basis of structural echo information.  相似文献   

11.
Interspecific differences in traits can alter the relative niche use of species within the same environment. Bats provide an excellent model to study niche use because they use a wide variety of behavioral, acoustic, and morphological traits that may lead to multi‐species, functional groups. Predatory bats have been classified by their foraging location (edge, clutter, open space), ability to use aerial hawking or substrate gleaning and echolocation call design and flexibility, all of which may dictate their prey use. For example, high frequency, broadband calls do not travel far but offer high object resolution while high intensity, low frequency calls travel further but provide lower resolution. Because these behaviors can be flexible, four behavioral categories have been proposed: (a) gleaning, (b) behaviorally flexible (gleaning and hawking), (c) clutter‐tolerant hawking, and (d) open space hawking. Many recent studies of diet in bats use molecular tools to identify prey but mainly focus on one or two species in isolation; few studies provide evidence for substantial differences in prey use despite the many behavioral, acoustic, and morphological differences. Here, we analyze the diet of 17 sympatric species in the Chihuahuan desert and test the hypothesis that peak echolocation frequency and behavioral categories are linked to differences in diet. We find no significant correlation between dietary richness and echolocation peak frequency though it spanned close to 100 kHz across species. Our data, however, suggest that bats which use both gleaning and hawking strategies have the broadest diets and are most differentiated from clutter‐tolerant aerial hawking species.  相似文献   

12.
Dolphins are well known for their complex social and foraging behaviours. Direct underwater observations of wild dolphin feeding behaviour however are rare. At mass spawning aggregations of giant cuttlefish (Sepia apama) in the Upper Spencer Gulf in South Australia, a wild female Indo-Pacific bottlenose dolphin (Tursiops aduncus) was observed and recorded repeatedly catching, killing and preparing cuttlefish for consumption using a specific and ordered sequence of behaviours. Cuttlefish were herded to a sand substrate, pinned to the seafloor, killed by downward thrust, raised mid-water and beaten by the dolphin with its snout until the ink was released and drained. The deceased cuttlefish was then returned to the seafloor, inverted and forced along the sand substrate in order to strip the thin dorsal layer of skin off the mantle, thus releasing the buoyant calcareous cuttlebone. This stepped behavioural sequence significantly improves prey quality through 1) removal of the ink (with constituent melanin and tyrosine), and 2) the calcareous cuttlebone. Observations of foraging dolphin pods from above-water at this site (including the surfacing of intact clean cuttlebones) suggest that some or all of this prey handling sequence may be used widely by dolphins in the region. Aspects of the unique mass spawning aggregations of giant cuttlefish in this region of South Australia may have contributed to the evolution of this behaviour through both high abundances of spawning and weakened post-spawning cuttlefish in a small area (>10,000 animals on several kilometres of narrow rocky reef), as well as potential long-term and regular visitation by dolphin pods to this site.  相似文献   

13.
Tool-use research has focused primarily on land-based animals, with less consideration given to aquatic animals and the environmental challenges and conditions they face. Here, we review aquatic tool use and examine the contributing ecological, physiological, cognitive and social factors. Tool use among aquatic animals is rare but taxonomically diverse, occurring in fish, cephalopods, mammals, crabs, urchins and possibly gastropods. While additional research is required, the scarcity of tool use can likely be attributable to the characteristics of aquatic habitats, which are generally not conducive to tool use. Nonetheless, studying tool use by aquatic animals provides insights into the conditions that promote and inhibit tool-use behaviour across biomes. Like land-based tool users, aquatic animals tend to find tools on the substrate and use tools during foraging. However, unlike on land, tool users in water often use other animals (and their products) and water itself as a tool. Among sea otters and dolphins, the two aquatic tool users studied in greatest detail, some individuals specialize in tool use, which is vertically socially transmitted possibly because of their long dependency periods. In all, the contrasts between aquatic- and land-based tool users enlighten our understanding of the adaptive value of tool-use behaviour.  相似文献   

14.
Because cetaceans are difficult to study in the wild, little is known about how they use their sounds in their natural environment. Only the recent development of passive acoustic localization systems has enabled observations of the communication behaviour of individuals for correlation with their surface behaviour. Using such a system, I show that bottlenose dolphins in the Moray Firth, Scotland, produce low-frequency bray calls which are clearly correlated with feeding on salmonids. The production of these calls is followed by fast approaches by conspecifics in the area. In animals which use sound as a foraging tool, it is difficult to distinguish between food calls which have evolved because of their role in attracting conspecifics, and food manipulation or searching calls which may attract conspecifics as a by-product. However, the low-frequency structure of the bottlenose dolphin bray suggests that it evolved because of a role in manipulating prey rather than in attracting conspecifics. This conclusion suggests that dolphins exploit the perceptual systems of their prey to facilitate capture.  相似文献   

15.
Summary Globally unique hexactinellid sponge reefs occur on the continental shelf off British Columbia, Canada. They cover about 425 km2 of seafloor on the continental shelf off British Columbia (Canada) in water depths between 165 and 240 metres and occur on a low-angle deep shelf, iceberg scoured seafloor, characterized by very low sedimentation rates and very stable environmental conditions. The sponge bioherms are up to 19 metres high with steep flanks, whereas the biostromes are 2–10 metres thick and many kilometres wide. They all consist of dense populations of only seven hexactinellid species. Three of them, all hexactinosan species (Aphrocallistes vastus, Heterochone calyx, Farrea occa) are the main frambuilders, composing a true rigid framework of sponge skeletons encased in a organic rich matrix of modern clay baffled by the sponges. Growth rates of hexactinosan sponges range in the order of 0–7 centimetres per year. The base of the oldest sponge reefs date from approximately 9000 years b.p. Different invertebrate and fish faunas occupy the reefs than occur on adjacent seafloor areas and some species appear to use the sponge reef complex structures as refugia where they can hide. Sidescan sonar data and direct observation by manned submersible clearly show that large areas of sponge reefs have been heavily damaged by seafloor trawling in the past decade. These unique extant siliceous sponge reefs can be used as a modern analogue for a better understanding and interpretation of fossil siliceous sponge reefs, known from many ages and many locations world wide.  相似文献   

16.
Toothed whales (Cetacea, odontoceti) use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica) and Irrawaddy dolphins (Orcaella brevirostris) within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB) re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191) re 1 µPapp. These source levels are 1–2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes.  相似文献   

17.
Carnivorous bats?   总被引:1,自引:0,他引:1  
Only large bats can take large prey but size alone does not identify 'carnivorous bats' (those including small terrestrial vertebrates in their diets). Morphological data, including body mass, aspect ratio and relative wing loading, along with information about orientation and foraging strategies can be used to characterize a suite of features which identifies carnivorous bats. We use the available data to make predictions about which large Microchiroptera will be found to be carnivorous. A combination of morphological features including body mass (^0.017 kg), low aspect ratio (<6.3), and low relative wing loading (<36) significantly identifies carnivorous species from among other animal-eating forms. Some carnivorous species use short, low intensity, high frequency, broadband echolocation cells but rely on prey generated cues to locate their targets. Other carnivorous species are facultative echolocators. The available data lead to the prediction that Phyllostomus hastatus and Hipposideros diadema are not regularly carnivorous, while Otonycteris hemprichi may be. Large species with echolocation calls adapted for flutter detection (rhinolophids and hipposiderids) or those with long narrowband calls and high aspect ratio wings with high relative wing loading (for example molossids, some emballonurids and some vespertilionids) chase airborne prey in the open; neither of these approaches involves prey other than arthropods.  相似文献   

18.
The function(s) of a particular sound can be explored in detail only if the context of its use is well understood. The behavior of the signaler, and the habitat in which that behavior is observed, are two of the most important components of understanding context specific use of a sound. Bottlenose dolphin foraging behavior is often inferred from relatively few behavioral cues that are visible from the surface. To investigate the use of three specific sound types: echolocation, whistles, and pops during foraging, I recorded sound use by animals engaged in a set of previously defined specific foraging behaviors using a system that allowed me to see animals throughout the water column. Lone foraging animals produced all three sounds at significantly higher rates than animals foraging in groups, and the rate of sound production per animal in multi-animal foraging groups did not vary even as the groups reached up to five individuals. Production of echolocation and pops by lone foraging animals accounted for much of the difference. Foraging dolphins also displayed habitat-specific use of particular sound types. They preferentially produced echolocation and pops in the sand habitat and, at least for lone animals, in the seagrass edge habitat.  相似文献   

19.
Some probe-foraging birds locate their buried prey by detecting mechanical vibrations in the substrate using a specialized tactile bill-tip organ comprising mechanoreceptors embedded in densely clustered pits in the bone at the tip of their beak. This remarkable sensory modality is known as ‘remote touch’, and the associated bill-tip organ is found in probe-foraging taxa belonging to both the palaeognathous (in kiwi) and neognathous (in ibises and shorebirds) clades of modern birds. Intriguingly, a structurally similar bill-tip organ is also present in the beaks of extant, non-probing palaeognathous birds (e.g. emu and ostriches) that do not use remote touch. By comparison with our comprehensive sample representing all orders of extant modern birds (Neornithes), we provide evidence that the lithornithids (the most basal known palaeognathous birds which evolved in the Cretaceous period) had the ability to use remote touch. This finding suggests that the occurrence of the vestigial bony bill-tip organ in all modern non-probing palaeognathous birds represents a plesiomorphic condition. Furthermore, our results show that remote-touch probe foraging evolved very early among the Neornithes and it may even have predated the palaeognathous–neognathous divergence. We postulate that the tactile bony bill-tip organ in Neornithes may have originated from other snout tactile specializations of their non-avian theropod ancestors.  相似文献   

20.
The feeding and hunting behaviour of Nycteris grandis and N. thebaica was observed in captivity at the Sengwa Wildlife Research Area in Zimbabwe in January and February 1982. Both species preferentially selected katydids and beetles over moths, and relied heavily on acoustic stimuli emanating from prey to detect targets. Nycteris grandis readily consumed frogs and bats and appeared not to use the calls of male frogs or the echolocation calls of other bats to locate prey. Both species produced echolocation calls during attacks on prey, increasing the rates of pulse repetition as they closed with targets and suggesting the use of echolocation in hunting. The echolocation calls of N. grandis are described along with general observations of the behaviour of both species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号