首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jin G  Zhang S  Zhang XS  Chen L 《PloS one》2007,2(11):e1207

Background

It has been recognized that modular organization pervades biological complexity. Based on network analysis, ‘party hubs’ and ‘date hubs’ were proposed to understand the basic principle of module organization of biomolecular networks. However, recent study on hubs has suggested that there is no clear evidence for coexistence of ‘party hubs’ and ‘date hubs’. Thus, an open question has been raised as to whether or not ‘party hubs’ and ‘date hubs’ truly exist in yeast interactome.

Methodology

In contrast to previous studies focusing on the partners of a hub or the individual proteins around the hub, our work aims to study the network motifs of a hub or interactions among individual proteins including the hub and its neighbors. Depending on the relationship between a hub''s network motifs and protein complexes, we define two new types of hubs, ‘motif party hubs’ and ‘motif date hubs’, which have the same characteristics as the original ‘party hubs’ and ‘date hubs’ respectively. The network motifs of these two types of hubs display significantly different features in spatial distribution (or cellular localizations), co-expression in microarray data, controlling topological structure of network, and organizing modularity.

Conclusion

By virtue of network motifs, we basically solved the open question about ‘party hubs’ and ‘date hubs’ which was raised by previous studies. Specifically, at the level of network motifs instead of individual proteins, we found two types of hubs, motif party hubs (mPHs) and motif date hubs (mDHs), whose network motifs display distinct characteristics on biological functions. In addition, in this paper we studied network motifs from a different viewpoint. That is, we show that a network motif should not be merely considered as an interaction pattern but be considered as an essential function unit in organizing modules of networks.  相似文献   

2.
3.
Many protein-protein interactions are mediated through independently folding modular domains. Proteome-wide efforts to model protein-protein interaction or "interactome" networks have largely ignored this modular organization of proteins. We developed an experimental strategy to efficiently identify interaction domains and generated a domain-based interactome network for proteins involved in C. elegans early-embryonic cell divisions. Minimal interacting regions were identified for over 200 proteins, providing important information on their domain organization. Furthermore, our approach increased the sensitivity of the two-hybrid system, resulting in a more complete interactome network. This interactome modeling strategy revealed insights into C. elegans centrosome function and is applicable to other biological processes in this and other organisms.  相似文献   

4.
5.
Relative insulin deficiency, in response to increased metabolic demand (obesity, genetic insulin resistance, pregnancy and aging) lead to Type2 diabetes. Susceptibility of the type 2 diabetes has a genetic basis, as a subset of people with risk factors (obesity, Insulin Resistance, pregnancy), develop Type2 Diabetes. We aimed to identify ‘cluster’ of overexpressed genes, underlying increased beta cell survival in diabetes resistant C57BL/6J ob/ob mice (compared to diabetes susceptible BTBR ob/ob mice). We used ‘consensus’ overexpression status to identify ‘cluster’ of 11 genes consisting of Aldh18a1, Rfc4, Dynlt3, Prom1, H13, Psen1, Ssr4, Dad1, Anpep, Fam111a and Plk1. Information (biological processes, molecular functions, cellular components, protein-protein interactions/associations, gene deletion/knockout/inhibition studies) of all the genes in ‘cluster’ were collected by text mining using different literature search tools, gene information databases and protein-protein interaction databases. Beta cell specific function of these genes were also inferred using meta analysis tool of Beta Cell Biology Consortium, by studying the expression pattern of these genes in microarray studies related to beta-cell stimulation/injury, pancreas development and growth and cell differentiation. In the ‘clusters’, 6 genes (Dad1, Psen1, Ssr4, Rfc4, H13, Plk1) have a role in cell survival. Only Psen1 was previously identified to have role in successful beta cell compensation. We advocate these genes to be potentially involved in successful beta cell compensation and prevent T2D in humans, by conferring protection against diabetogenic insults.  相似文献   

6.
7.
The architecture of the network of protein–protein physical interactions in Saccharomyces cerevisiae is exposed through the combination of two complementary theoretical network measures, betweenness centrality and ‘Q-modularity’. The yeast interactome is characterized by well-defined topological modules connected via a small number of inter-module protein interactions. Should such topological inter-module connections turn out to constitute a form of functional coordination between the modules, we speculate that this coordination is occurring typically in a pairwise fashion, rather than by way of high-degree hub proteins responsible for coordinating multiple modules. The unique non-hub-centric hierarchical organization of the interactome is not reproduced by gene duplication-and-divergence stochastic growth models that disregard global selective pressures.  相似文献   

8.
A decade of high-throughput screenings for intraviral and virus-host protein-protein interactions led to the accumulation of data and to the development of theories on laws governing interactome organization for many viruses. We present here a computational analysis of intraviral protein networks (EBV, FLUAV, HCV, HSV-1, KSHV, SARS-CoV, VACV, and VZV) and virus-host protein networks (DENV, EBV, FLUAV, HCV, and VACV) from up-to-date interaction data, using various mathematical approaches. If intraviral networks seem to behave similarly, they are clearly different from the human interactome. Viral proteins target highly central human proteins, which are precisely the Achilles' heel of the human interactome. The intrinsic structural disorder is a distinctive feature of viral hubs in virus-host interactomes. Overlaps between virus-host data sets identify a core of human proteins involved in the cellular response to viral infection and in the viral capacity to hijack the cell machinery for viral replication. Host proteins that are strongly targeted by a virus seem to be particularly attractive for other viruses. Such protein-protein interaction networks and their analysis represent a powerful resource from a therapeutic perspective.  相似文献   

9.
10.
Comparison of human protein-protein interaction maps   总被引:1,自引:0,他引:1  
MOTIVATION: Large-scale mappings of protein-protein interactions have started to give us new views of the complex molecular mechanisms inside a cell. After initial projects to systematically map protein interactions in model organisms such as yeast, worm and fly, researchers have begun to focus on the mapping of the human interactome. To tackle this enormous challenge, different approaches have been proposed and pursued. While several large-scale human protein interaction maps have recently been published, their quality remains to be critically assessed. RESULTS: We present here a first comparative analysis of eight currently available large-scale maps with a total of over 10,000 unique proteins and 57,000 interactions included. They are based either on literature search, orthology or by yeast-two-hybrid assays. Comparison reveals only a small, but statistically significant overlap. More importantly, our analysis gives clear indications that all interaction maps imply considerable selection and detection biases. These results have to be taken into account for future assembly of the human interactome. AVAILABILITY: An integrated human interaction network called Unified Human Interactome (UniHI) is made publicly accessible at http://www.mdc-berlin.de/unihi. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

11.
Bacteria use protein-protein interactions to infect their hosts and hijack fundamental pathways, which ensures their survival and proliferation. Hence, the infectious capacity of the pathogen is closely related to its ability to interact with host proteins. Here, we show that hubs in the host-pathogen interactome are isolated in the pathogen network by adapting the geometry of the interacting interfaces. An imperfect mimicry of the eukaryotic interfaces allows pathogen proteins to actively bind to the host’s target while preventing deleterious effects on the pathogen interactome. Understanding how bacteria recognize eukaryotic proteins may pave the way for the rational design of new antibiotic molecules.  相似文献   

12.
13.
Lim J  Hao T  Shaw C  Patel AJ  Szabó G  Rual JF  Fisk CJ  Li N  Smolyar A  Hill DE  Barabási AL  Vidal M  Zoghbi HY 《Cell》2006,125(4):801-814
Many human inherited neurodegenerative disorders are characterized by loss of balance due to cerebellar Purkinje cell (PC) degeneration. Although the disease-causing mutations have been identified for a number of these disorders, the normal functions of the proteins involved remain, in many cases, unknown. To gain insight into the function of proteins involved in PC degeneration, we developed an interaction network for 54 proteins involved in 23 inherited ataxias and expanded the network by incorporating literature-curated and evolutionarily conserved interactions. We identified 770 mostly novel protein-protein interactions using a stringent yeast two-hybrid screen; of 75 pairs tested, 83% of the interactions were verified in mammalian cells. Many ataxia-causing proteins share interacting partners, a subset of which have been found to modify neurodegeneration in animal models. This interactome thus provides a tool for understanding pathogenic mechanisms common for this class of neurodegenerative disorders and for identifying candidate genes for inherited ataxias.  相似文献   

14.
15.
Propagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown. In this study we hypothesized that MAS C-terminal tail (Ct) is a major determinant of receptor-scaffold protein interactions mediating MAS signaling. Mass-spectrometry based proteomic analysis was used to comprehensively identify the proteins that interact with MAS Ct comprising the PDZ-binding motif (PDZ-BM). We identified both PDZ and non-PDZ proteins from human embryonic kidney cell line, mouse atrial cardiomyocyte cell line and human heart tissue to interact specifically with MAS Ct. For the first time our study provides a panel of PDZ and other proteins that potentially interact with MAS with high significance. A ‘cardiac-specific finger print’ of MAS interacting PDZ proteins was identified which includes DLG1, MAGI1 and SNTA. Cell based experiments with wild-type and mutant MAS lacking the PDZ-BM validated MAS interaction with PDZ proteins DLG1 and TJP2. Bioinformatics analysis suggested well-known multi-protein scaffold complexes involved in nitric oxide signaling (NOS), cell-cell signaling of neuromuscular junctions, synapses and epithelial cells. Majority of these protein hits were predicted to be part of disease categories comprising cancers and malignant tumors. We propose a ‘MAS-signalosome’ model to stimulate further research in understanding the molecular mechanism of MAS function. Identifying hierarchy of interactions of ‘signalosome’ components with MAS will be a necessary step in future to fully understand the physiological and pathological functions of this enigmatic receptor.  相似文献   

16.
17.
Date hub proteins have 1 or 2 interaction interfaces but many interaction partners. This raises the question of whether all partner proteins compete for the interaction interface of the hub or if the cell carefully regulates aspects of this process? Here, we have used real-time rendering of protein interaction networks to analyse the interactions of all the 1 or 2 interface hubs of Saccharomyces cerevisiae during the cell cycle. By integrating previously determined structural and gene expression data, and visually hiding the nodes (proteins) and their edges (interactions) during their troughs of expression, we predict when interactions of hubs and their partners are likely to exist. This revealed that 20 out of all 36 one- or two- interface hubs in the yeast interactome fell within two main groups. The first was dynamic hubs with static partners, which can be considered as ‘competitive hubs’. Their interaction partners will compete for the interaction interface of the hub and the success of any interaction will be dictated by the kinetics of interaction (abundance and affinity) and subcellular localisation. The second was static hubs with dynamic partners, which we term ‘non-competitive hubs’. Regulatory mechanisms are finely tuned to lessen the presence and/or effects of competition between the interaction partners of the hub. It is possible that these regulatory processes may also be used by the cell for the regulation of other, non-cell cycle processes.  相似文献   

18.
The decreasing cost of sequencing is leading to a growing repertoire of personal genomes. However, we are lagging behind in understanding the functional consequences of the millions of variants obtained from sequencing. Global system-wide effects of variants in coding genes are particularly poorly understood. It is known that while variants in some genes can lead to diseases, complete disruption of other genes, called ‘loss-of-function tolerant’, is possible with no obvious effect. Here, we build a systems-based classifier to quantitatively estimate the global perturbation caused by deleterious mutations in each gene. We first survey the degree to which gene centrality in various individual networks and a unified ‘Multinet’ correlates with the tolerance to loss-of-function mutations and evolutionary conservation. We find that functionally significant and highly conserved genes tend to be more central in physical protein-protein and regulatory networks. However, this is not the case for metabolic pathways, where the highly central genes have more duplicated copies and are more tolerant to loss-of-function mutations. Integration of three-dimensional protein structures reveals that the correlation with centrality in the protein-protein interaction network is also seen in terms of the number of interaction interfaces used. Finally, combining all the network and evolutionary properties allows us to build a classifier distinguishing functionally essential and loss-of-function tolerant genes with higher accuracy (AUC = 0.91) than any individual property. Application of the classifier to the whole genome shows its strong potential for interpretation of variants involved in Mendelian diseases and in complex disorders probed by genome-wide association studies.  相似文献   

19.
Most processes in the cell are delivered by protein complexes, rather than individual proteins. While the association of proteins has been studied extensively in protein-protein interaction networks (the interactome), an intuitive and effective representation of complex-complex connections (the complexome) is not yet available. Here, we describe a new representation of the complexome of Saccharomyces cerevisiae. Using the core-module-attachment data of Gavin et al. ( Nature 2006 , 440 , 631 - 6 ), protein complexes in the network are represented as nodes; these are connected by edges that represent shared core and/or module protein subunits. To validate this network, we examined the network topology and its distribution of biological processes. The complexome network showed scale-free characteristics, with a power law-like node degree distribution and clustering coefficient independent of node degree. Connected complexes in the network showed similarities in biological process that were nonrandom. Furthermore, clusters of interacting complexes reflected a higher-level organization of many cellular functions. The strong functional relationships seen in these clusters, along with literature evidence, allowed 44 uncharacterized complexes to be assigned putative functions using guilt-by-association. We demonstrate our network model using the GEOMI visualization platform, on which we have developed capabilities to integrate and visualize complexome data.  相似文献   

20.
The complex integrity of the cells and its sudden, but often predictable changes can be described and understood by the topology and dynamism of cellular networks. All these networks undergo both local and global rearrangements during stress and development of diseases. Here, we illustrate this by showing the stress-induced structural rearrangement of the yeast protein-protein interaction network (interactome). In an unstressed state, the yeast interactome is highly compact, and the centrally organized modules have a large overlap. During stress, several original modules became more separated, and a number of novel modules also appear. A few basic functions such as theproteasome preserve their central position; however, several functions with high energy demand, such the cell-cycle regulation loose their original centrality during stress. A number of key stress-dependent protein complexes, such as the disaggregation-specific chaperone, Hsp104 gain centrality in the stressed yeast interactome. Molecular chaperones, heat shock, or stress proteins became established as key elements in our molecular understanding of the cellular stress response. Chaperones form complex interaction networks (the chaperome) with each other and their partners. Here, we show that the human chaperome recovers the segregation of protein synthesis-coupled and stress-related chaperones observed in yeast recently. Examination of yeast and human interactomes shows that chaperones 1) are intermodular integrators of protein-protein interaction networks, which 2) often bridge hubs and 3) are favorite candidates for extensive phosphorylation. Moreover, chaperones 4) become more central in the organization of the isolated modules of the stressed yeast protein-protein interaction network, which highlights their importance in the decoupling and recoupling of network modules during and after stress. Chaperone-mediated evolvability of cellular networks may play a key role in cellular adaptation during stress and various polygenic and chronic diseases, such as cancer, diabetes or neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号