首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Sumbayev VV 《FEBS letters》2008,582(2):319-326
Toll-like receptor 4 (TLR4) is required for recognition of lipopolysaccharide (LPS) of Gram-negative bacteria and induction of the innate immune response to them. Nevertheless, the involvement of some crucial pathways in TLR4 signalling is poorly understood. Here, we report that LPS-induced TLR4 signalling triggers cross talk of HIF-1alpha and ASK1 in THP-1 human myeloid monocytic leukaemia cells. Both pathways are activated via redox-dependent mechanism associated with tyrosine kinase/phospholipase C-1gamma-mediated activation of protein kinase C alpha/beta, which are known to activate NADPH oxidase and the production of reactive oxygen species that activate both HIF-1alpha and ASK1. ASK1 contributes to the stabilisation of HIF-1alpha, most likely via activation of p38 MAP kinase.  相似文献   

5.
人干细胞因子受体c-Kit稳定表达细胞株的构建   总被引:8,自引:0,他引:8  
 干细胞因子 (SCF)是一种重要的造血因子 ,其受体c Kit具有酪氨酸激酶活性 .SCF c Kit介导的细胞内信号转导在造血、肥大细胞的生成及其功能、以及生殖细胞和黑色素细胞的发育中起着关键的作用 .通过构建人c kitcDNA的pcDNA3.1真核表达载体 ,转染不表达人c kit的小鼠髓系祖细胞FDC P1.经Zeocin抗性筛选 ,PCR、RT PCR、Western印迹分析、流式细胞仪分析等方法检测到人c kit基因的稳定整合和表达 ,并分布于细胞表面 ,证明获得了稳定表达人c Kit受体的细胞株 .用MTT法检测重组细胞株增殖特性 ,表明重组人SCF可刺激其增殖 .为进一步研究人c Kit受体介导的细胞内信号转导及检测重组人干细胞因子生物学活性提供了有效的细胞模型  相似文献   

6.
Migration of neural cells to their final positions is crucial for the correct formation of the central nervous system. Several extrinsic factors are known to be involved in the regulation of neural migration. We asked if stem cell factor (SCF), well known as a chemoattractant and survival factor in the hematopoietic lineage, could elicit similar responses in neural stem cells. For that purpose, a microchemotaxis assay was used to study the effect of SCF on migration of neural stem cells from the embryonic rat cortex. Our results show that SCF-induced chemotaxis and that specific antibodies to SCF or tyrosine kinase inhibitors abolished the migratory response. The SCF-receptor, Kit, was expressed in neural stem cells and in their differentiated progeny. We also show that SCF is a survival factor, but not a mitogen or a differentiation factor for neural stem cells. These data suggest a role for SCF in cell migration and survival in the developing cortex.  相似文献   

7.
Nitric oxide (NO) is a reactive secondary mediator, which has been found to participate in cell cycle regulation and apoptosis in myeloid macrophages, the key effectors of inflammatory and innate immune responses. However, the molecular mechanisms of nitric oxide-induced death of myeloid macrophages are not well understood. In this study we have found that NO derived from S-nitrosoglutathione (GSNO) activates ASK1 in THP-1 human myeloid macrophages in a concentration and time-dependent manner. It also induces accumulation of HIF-1α protein in a concentration-dependent manner, which peaks at 4 h of exposure to 1 mM GSNO. GSNO does not affect the level of HIF-1α mRNA as detected by the RT-PCR. In addition, GSNO was found to induce accumulation of p53 in normal but not HIF-1α knockdown THP-1 cells, where expression of this protein was silenced by specific siRNA. It has also been found that GSNO-mediated accumulation of p53 depends on activation of ASK1 since no GSNO-induced p53 stabilisation was observed in THP-1 cells transfected with dominant-negative form of this kinase. However, in both HIF-1α knockdown THP-1 cells and those transfected with the dominant-negative form of ASK1, GSNO was able to induce cell death as detected by the MTS cell viability assay leading to an increase in release of LDH.  相似文献   

8.
The W/c-kit and Steel loci respectively encode a receptor tyrosine kinase (Kit) and its extracellular ligand, Steel factor, which are essential for the development of hematopoietic, melanocyte, and germ cell lineages in the mouse. To determine the biochemical basis of the Steel/W developmental pathway, we have investigated the response of the Kit tyrosine kinase and several potential cytoplasmic targets to stimulation with Steel in mast cells derived from normal and mutant W mice. In normal mast cells, Steel induces Kit to autophosphorylate on tyrosine and bind to phosphatidylinositol 3'-kinase (PI3K) and phospholipase C-gamma 1 but not detectably to Ras GTPase-activating protein. Additionally, we present evidence that Kit tyrosine phosphorylation acts as a switch to promote complex formation with PI3K. In mast cells from mice homozygous for the W42 mutant allele, Kit is not tyrosine phosphorylated and fails to bind PI3K following Steel stimulation. In contrast, in the transformed mast cell line P815, Kit is constitutively phosphorylated and binds to PI3K in the absence of ligand. These results suggest that Kit autophosphorylation and its physical association with a unique subset of cytoplasmic signaling proteins are critical for mammalian development.  相似文献   

9.
10.

Background

Human lung mast cells (HLMCs) infiltrate the airway epithelium and airway smooth muscle (ASM) in asthmatic airways. The mechanism of HLMC adhesion to both cell types is only partly defined, and adhesion is not inhibited by function-blocking anti-Kit and anti-stem cell factor (SCF) antibodies. Our aim was to identify adhesion molecules expressed by human mast cells that mediate adhesion to human ASM cells (HASMCs) and human airway epithelial cells.

Methods

We used phage-display to isolate single chain Fv (scFv) antibodies with adhesion-blocking properties from rabbits immunised with HLMC and HMC-1 membrane proteins.

Results

Post-immune rabbit serum labelled HLMCs in flow cytometry and inhibited their adhesion to human BEAS-2B epithelial cells. Mast cell-specific scFvs were identified which labelled mast cells but not Jurkat cells by flow cytometry. Of these, one scFv (A1) consistently inhibited mast cell adhesion to HASMCs and BEAS-2B epithelial cells by about 30 %. A1 immunoprecipitated Kit (CD117) from HMC-1 lysates and bound to a human Kit-expressing mouse mast cell line, but did not interfere with SCF-dependent Kit signalling.

Conclusion

Kit contributes to human mast cell adhesion to human airway epithelial cells and HASMCs, but may utilise a previously unidentified adhesion domain that lies outside the SCF binding site. Targeting this adhesion pathway might offer a novel approach for the inhibition of mast cell interactions with structural airway cells, without detrimental effects on Kit signalling in other tissues.  相似文献   

11.
Stem cell factor (SCF) is thought to be a member of the four-helical bundle cytokine superfamily, and exists in solution as a noncovalent homodimer. It is the ligand for Kit, a tyrosine kinase type III receptor. The interaction of SCF and Kit affects early hematopoietic progenitors, as well as gametocytes, melanocytes, and mast cells. Upon binding of SCF the Kit undergoes dimerization and transphosphorylation. Circular dichroism (CD), intrinsic fluorescence, and Fourier transform infrared (FTIR) spectroscopy were used for conformational analyses of free SCF, soluble Kit (sKit), and the complex. The sKit consisted of the extracellular domain of Kit, contained five Ig-like domains, and was prepared from the conditioned media of transfected Chinese hamster ovary cells. With these techniques, a reproducible conformational change was seen upon ligand/receptor binding. The far-UV CD and FTIR spectroscopy indicated a slight increase in the -helical content. The near-UV CD and fluorescence spectra showed changes in the environments of the aromatic amino acids. The thermal denaturation of SCF was not affected by complex formation, while the melting temperature of sKit increased only a few degrees when binding SCF. This indicates that binding is temperature dependent, consistent with titration calorimetry results published previously which demonstrated that there is a large enthalpy of binding. The conformational changes which accompany SCF/sKit binding could play a role in the receptor dimerization and signal transduction which follow.  相似文献   

12.
Activation of Kit receptor protein-tyrosine kinase (PTK) by its ligand Stem Cell Factor (SCF) is required for the development of mast cells, and for the regulation of mast cell proliferation, migration and modulation of inflammatory mediator release. Recent studies have implicated the non-receptor PTK Fps/Fes (hereafter referred to as Fes) in signaling downstream of oncogenic Kit, however, the potential role of Fes in regulating Kit signaling is not well defined. In this study, we show that SCF induces transient tyrosine phosphorylation of wild-type Fes as well as kinase-dead Fes in bone marrow-derived mast cells (BMMCs). The latter finding implicates an upstream kinase acting on Fes, which we identified as Fyn PTK. SCF treatment of BMMCs promoted recruitment of Fes to Kit, potentially via direct interaction of the Fes SH2 domain with phosphorylated Kit. While Fes was not required for SCF-induced signaling to Akt and Erk kinases, Fes-deficient (fes?/?) BMMCs displayed a defect in sustained p38 kinase activation, compared to control cells. SCF-treated Fes-deficient BMMCs also displayed elevated β1 integrin-mediated cell adhesion and spreading on fibronectin, compared to control cells, and a reduction in cell polarization at later times of SCF treatment. Restoring Fes expression in fes?/? BMMCs by retroviral transduction was sufficient to rescue cell spreading and polarization defects. Interestingly, SCF-induced chemotaxis of BMMCs was also defective in Fes-deficient BMMCs, and restored in Fes-rescue BMMCs. Overall, these results implicate Fes in regulating cross-talk between Kit and β1 integrins to promote cytoskeletal reorganization and motility of mast cells.  相似文献   

13.
14.
低氧诱导因子-1(HIF-1)是细胞适应低氧反应的主要转录因子,由氧敏感的HIF-1α和组成性表达的HIF-1β组成.系列研究表明,低氧是肿瘤的重要微环境.相应地,HIF-1在实体瘤的发展和转移过程中发挥重要作用.本实验室研究显示,低氧通过HIF-1的转录非依赖功能,即与造血细胞分化相关的转录因子C/EBPα和Runx1/AML1等相互作用,并增加其转录活性,诱导急性髓细胞性白血病细胞分化.本文就低氧和HIF-1在白血病细胞分化中的作用作一综述.  相似文献   

15.
The stem cell factor (SCF) is a polypeptide ligand that is essential for the development of germ cells, hematopoietic progenitor cells, and melanocyte precursors. It binds to a tyrosine kinase membrane receptor that is encoded by the c-kit proto-oncogene. We have constructed an expression vector that directs the synthesis of the entire extracellular ligand-binding domain of the Kit/SCF receptor. When expressed and amplified in Chinese hamster ovary cells, a secreted 90-kDa glycoprotein could be harvested from the growth medium of the cells in a soluble form. This extracellular portion of the Kit/SCF receptor, denoted Kit-X, was recognized by antibodies specific to the SCF receptor; and when injected into animals, it raised antibodies that were reactive with the complete membrane form of the receptor. Direct binding and covalent cross-linking of radiolabeled SCF showed that Kit-X fully retained high affinity ligand binding and also underwent efficient dimerization in the presence of the ligand. The capacity of Kit-X to act as an antagonist of SCF was assayed on cultured cells that overexpress the receptor. Simultaneous addition of SCF and Kit-X to these cells resulted in a stoichiometric inhibition of SCF binding and a consequent decrease in autophosphorylation of the SCF receptor on tyrosine residues. The inhibition extended to later SCF-mediated responses, including the association of the receptor with phosphatidylinositol 3'-kinase and coupling to the Raf1 protein kinase. These results indicate that the recombinant ectodomain of the Kit-SCF receptor can be used as a specific antagonist of SCF actions and may enable detailed molecular analysis of ligand-receptor interactions.  相似文献   

16.
17.
The product of the c-kit proto-oncogene, denoted Kit/SCF-R, encodes a tyrosine kinase receptor for stem cell factor (SCF). Kit/SCF-R induces proliferation, differentiation or migration of cells within the hematopoietic, gametogenic and melanogenic lineages at different developmental stages. We report here that protein kinase C (PKC) mediates phosphorylation of Kit/SCF-R on serine residues in response to SCF or PMA in intact cells. The phosphorylation inhibits SCF-induced tyrosine autophosphorylation of Kit/SCF-R. In vitro studies showed that PKC phosphorylated the Kit/SCF-R directly on serine residues and inhibited autophosphorylation of Kit/SCF-R, as well as its kinase activity towards an exogenous substrate. The PKC-induced phosphorylation did not affect Kit/SCF-R ligand binding affinity. Inhibition of PKC led to increased SCF-induced tyrosine autophosphorylation, as well as increased SCF-induced mitogenicity. In contrast, PKC was necessary for SCF-induced motility responses, including actin reorganization and chemotaxis. Our data suggest that PKC is involved in a negative feedback loop which regulates the Kit/SCF-R and that the activity of PKC determines whether the effect of SCF will be preferentially mitogenic or motogenic.  相似文献   

18.
Stem cell factor (SCF) is an early-acting hematopoietic cytokine that elicits multiple biological effects. SCF is dimeric and occurs in soluble and membrane-bound forms. It transduces signals by ligand- mediated dimerization of its receptor, Kit, which is a receptor tyrosine kinase related to the receptors for platelet-derived growth factor (PDGF), macrophage colony-stimulating factor, Flt-3 ligand and vascular endothelial growth factor (VEGF). All of these have extracellular ligand-binding portions composed of immunoglobulin-like repeats. We have determined the crystal structure of selenomethionyl soluble human SCF at 2.2 A resolution by multiwavelength anomalous diffraction phasing. SCF has the characteristic helical cytokine topology, but the structure is unique apart from core portions. The SCF dimer has a symmetric 'head-to-head' association. Using various prior observations, we have located potential Kit-binding sites on the SCF dimer. A superimposition of this dimer onto VEGF in its complex with the receptor Flt-1 places the binding sites on SCF in positions of topographical and electrostatic complementarity with the Kit counterparts of Flt-1, and a similar model can be made for the complex of PDGF with its receptor.  相似文献   

19.
The Philadelphia translocation commonly observed in chronic myeloid leukaemia (CML) and a proportion of cases of acute leukaemia results in the creation of a chimeric fusion protein, BCR-ABL. The fusion protein exhibits an elevated tyrosine kinase activity as compared to normal ABL. Using a temperature sensitive mutant of p210 BCR-ABL (ts-p210) we find that the primary effect of BCR-ABL expression in an IL-3 dependent cell line is to prolong survival following growth factor withdrawal; only a small proportion of cells remain viable and rapidly evolve to complete growth factor independence. During passage in the presence of IL-3 at the temperature permissive for kinase activity, ts-p210 expressing cultures become dominated by completely growth factor independent cells within 10-30 days. There is also a significant difference between BCR-ABL and IL-3 mediated signalling with respect to the MAP kinase pathway; in contrast to IL-3 stimulation or v-ABL expression, BCR-ABL does not signal ERK 2 (MAP 2 kinase) activation, underlining the apparent inability of BCR-ABL to deliver an immediate proliferative signal in Ba/F3 cells. Our data suggest that growth factor independence does not simply reflect the convergence of BCR-ABL and IL-3 mediated signalling pathways and its development, at least in Ba/F3 cells, requires prolonged exposure to BCR-ABL kinase activity. We suggest that the myeloid expansion characteristic of CML may result from the prolongation of survival of myeloid progenitor cells under conditions of limiting growth factor rather than their uncontrolled proliferation.  相似文献   

20.
Endothelial cell injury is a key factor in the spread of infection and pathogenicity of Treponema pallidum. The migration and adhesion reaction mediated by T. pallidum lipoprotein plays an important role. This study aimed to systematically explore the migration and adhesion effect of T. pallidum lipoprotein Tp0768 and its molecular mechanism. Stimulating vascular endothelial cells with Tp0768 increased the expression of ICAM-1, MCP-1, and IL-8. Moreover, it promoted the migration and adhesion of THP-1 cells to vascular endothelial cells. Our results revealed that Tp0768 promoted the THP-1 cells migrating and adhering to vascular endothelial cells by the PERK and IRE-1α pathways of endoplasmic reticulum (ER) stress. We further demonstrated that the inhibition of the NF-κB pathway and the downregulation of hypoxia-inducible factor 1 alpha (HIF-1α) reduced the mRNA levels of ICAM-1, MCP-1, and IL-8 induced by Tp0768. Also, the adhesion rate of THP-1 cells to endothelial cells decreased. After inhibiting ER stress, NF-κB p65 nuclear translocation was weakened, and the mRNA level of HIF-1α was also significantly downregulated. Our results indicated that T. pallidum lipoprotein Tp0768 promoted the migration and adhesion of THP-1 cells to vascular endothelial cells through ER stress and NF-κB/HIF-1α pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号