首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc is an essential trace element involved in a wide range of biological processes and human diseases. Zinc excess is deleterious, and animals require mechanisms to protect against zinc toxicity. To identify genes that modulate zinc tolerance, we performed a forward genetic screen for Caenorhabditis elegans mutants that were resistant to zinc toxicity. Here we demonstrate that mutations of the C. elegans histidine ammonia lyase (haly-1) gene promote zinc tolerance. C. elegans haly-1 encodes a protein that is homologous to vertebrate HAL, an enzyme that converts histidine to urocanic acid. haly-1 mutant animals displayed elevated levels of histidine, indicating that C. elegans HALY-1 protein is an enzyme involved in histidine catabolism. These results suggest the model that elevated histidine chelates zinc and thereby reduces zinc toxicity. Supporting this hypothesis, we demonstrated that dietary histidine promotes zinc tolerance. Nickel is another metal that binds histidine with high affinity. We demonstrated that haly-1 mutant animals are resistant to nickel toxicity and dietary histidine promotes nickel tolerance in wild-type animals. These studies identify a novel role for haly-1 and histidine in zinc metabolism and may be relevant for other animals.  相似文献   

2.
3.
4.
Zinc plays many critical roles in biological systems: zinc bound to proteins has structural and catalytic functions, and zinc is proposed to act as a signaling molecule. Because zinc deficiency and excess result in toxicity, animals have evolved sophisticated mechanisms for zinc metabolism and homeostasis. However, these mechanisms remain poorly defined. To identify genes involved in zinc metabolism, we conducted a forward genetic screen for chemically induced mutations that cause Caenorhabditis elegans to be resistant to high levels of dietary zinc. Nineteen mutations that confer significant resistance to supplemental dietary zinc were identified. To determine the map positions of these mutations, we developed a genomewide map of single nucleotide polymorphisms (SNPs) that can be scored by the high-throughput method of DNA pyrosequencing. This map was used to determine the approximate chromosomal position of each mutation, and the accuracy of this approach was verified by conducting three-factor mapping experiments with mutations that cause visible phenotypes. This is a generally applicable mapping approach that can be used to position a wide variety of C. elegans mutations. The mapping experiments demonstrate that the 19 mutations identify at least three genes that, when mutated, confer resistance to toxicity caused by supplemental dietary zinc. These genes are likely to be involved in zinc metabolism, and the analysis of these genes will provide insights into mechanisms of excess zinc toxicity.  相似文献   

5.
6.
7.
Soluble nickel compounds are likely human carcinogens. The mechanism by which soluble nickel may contribute to carcinogenesis is unclear, though several hypotheses have been proposed. Here we verify the ability of nickel to enter the cell via the divalent metal ion transporter 1 (DMT1) and disturb cellular iron homeostasis. Nickel may interfere with iron at both an extracellular level, by preventing iron from being transported into the cell, and at an intracellular level, by competing for iron sites on enzymes like the prolyl hydroxylases that modify hypoxia inducible factor-1α (HIF-1α). Nickel was able to decrease the binding of the Von Hippel–Lindau (VHL) protein to HIF-1α, indicating a decrease in prolyl hydroxylase activity. The ability of nickel to affect various iron dependent processes may be an important step in nickel dependent carcinogenesis. In addition, understanding the mechanisms by which nickel activates the HIF-1α pathway may lead to new molecular targets in fighting cancer.  相似文献   

8.
Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation.  相似文献   

9.
Zinc is a catalytic or structural cofactor of numerous proteins but can also be toxic if cells accumulate too much of this essential metal. Therefore, mechanisms of zinc homeostasis are needed to maintain a low but adequate amount of free zinc so that newly translated zinc‐dependent proteins can bind their cofactor without confounding issues of toxicity. These mechanisms include the regulation of uptake and efflux transporters and buffering of the free metal concentration by low‐molecular‐weight ligands in the cytosol. While many of the transporters involved in zinc homeostasis have been discovered in recent years, the molecules that buffer zinc have remained largely a mystery. In the new report highlighted by this commentary, Ma et al. (2014) provide convincing evidence that bacillithiol, the major low‐molecular‐weight thiol compound in Bacillus subtilis, serves as an important zinc buffer in those cells. Their discovery provides an important piece to the puzzle of how zinc buffering occurs in a large number of microbes and provides new clues about the role and relative importance of zinc buffering in all organisms.  相似文献   

10.
11.
Summary This review describes nickel toxicity and nickel resistance mechanisms in fungi. Nickel toxicity in fungi is influenced by environmental factors such as pH, temperature and the existence of organic matter and other ions. We describe resistance mechanisms in nickel-resistant mutants of yeasts and filamentous fungi which were obtained by exposure to a mutagen or by successive culture in media containing increasing concentrations of nickel ion. Nickel resistance may involve: (1) inactivation of nickel toxicity by the production of extracellular nickel-chelating substances such as glutathione; (2) reduced nickel accumulation, probably by modification of a magnesium transport system; (3) sequestration of nickel into a vacuole associated with free histidine and involving Ni-insensitivity of vacuolar membrane H+-ATPase.  相似文献   

12.
Response to acute nickel toxicity in rats as a function of sex   总被引:1,自引:0,他引:1  
Summary The effects of different nickel chloride doses upon blood and plasma glucose and essential metal homeostasis were studied in male and female rats. A definite sex-dependent response to injections of nickel has been observed for both the increase in plasma and blood glucose levels and the time at which these levels peak. Males showed a fast recovery from the rise in glucose levels and were much less affected by changes in the other parameters studied. In females, an extended rise in glucose levels was observed. All these effects are clearly nickel dose-dependent. Plasma, liver and kidney copper levels rose significantly in females while only a small decrease was observed in male kidneys. Zinc levels rose in all organs studied but males recovered to basal levels after the study period, whereas females maintained maximum levels at the end of the same period. An increase in urinary excretion of iron was observed. The present results show that the sex differences to acute nickel toxicity can be a helpful way to study metal interaction and discriminate between specific toxicity due to nickel or that induced by the associated hyperglucagonemia.  相似文献   

13.
14.
15.
Kang GS  Li Q  Chen H  Costa M 《Mutation research》2006,610(1-2):48-55
Several metals are carcinogenic but little is known about the mechanisms by which they cause cancer. A pathway that may contribute to metal ion induced carcinogenesis is by hypoxia signaling, which involves a disruption of cellular iron homeostasis by competition with iron transporters or iron-regulated enzymes. To examine the involvement of iron in the hypoxia signaling activity of these metal ions we investigated HIF-1alpha protein stabilization, IRP-1 activity, and ferritin protein levels in human lung carcinoma A459 cells exposed to various agents in serum- and iron-free salt-glucose medium (SGM) or in normal complete medium. We also studied the effects of excess exogenous iron on these responses induced by nickel ion exposure. Our results show the following: (1) SGM enhanced metals-induced HIF-1alpha stabilization and IRP-1 activation (e.g., nickel and cobalt ions). (2) If SGM was reconstituted with a slight excess level (25 microM of FeSO(4)) of iron, this enhancing ability was significantly decreased. (3) The effect of a high level of exogenous iron (500 microM of FeSO(4)) on metal-induced hypoxia and iron metabolism was highly dependent on the order of addition. If treatment with the Fe and metal ions was simultaneous (co-treatment), the effects of nickel ion exposure were overwhelmed, since the added Fe reversed HIF-1alpha stabilization, decreased IRP-1 activity, and increased ferritin level. Pre-treatment with iron was not able to reverse the responses caused by nickel ion exposure. These results imply that it is important to consider the available iron concentration and suitable exposure design when studying metal-induced hypoxia or metal-induced disruption of Fe homeostasis.  相似文献   

16.
17.
微生物铝毒和耐铝机制的研究现状   总被引:3,自引:0,他引:3  
铝是地球上含量最为丰富的金属元素 ,在酸性条件下 ,主要以Al3 存在。Al3 作为一种严重的环境毒剂 ,已经在众多模式生物中所证明。近年来 ,许多生物学家已日益注意到铝毒和耐铝性在环境科学与生命科学领域的重要性。结合研究工作 ,综述了微生物铝毒害和耐铝的机制。微生物通过①增强分泌有机酸与Al3 螯合 ,②超表达Mg2 通道蛋白 ,增强细胞转运吸收Mg2 ,③通过线粒体ATPase和液泡ATPase协同作用将Al3 隔离于液泡内 ,以及④通过氧化胁迫改变、调节Al3 毒害和耐铝性 ,减缓Al3 对细胞的毒害。  相似文献   

18.
The human immunodeficiency virus 1 (HIV-1) protease (PR) is an aspartyl protease essential for HIV-1 viral infectivity. HIV-1 PR has one catalytic site formed by the homodimeric enzyme. We chemically synthesized fully active HIV-1 PR using modern ligation methods. When complexed with the classic substrate-derived inhibitors JG-365 and MVT-101, the synthetic HIV-1 PR formed crystals that diffracted to 1.04- and 1.2-A resolution, respectively. These atomic-resolution structures revealed additional structural details of the HIV-1 PR's interactions with its active site ligands. Heptapeptide inhibitor JG-365, which has a hydroxyethylamine moiety in place of the scissile bond, binds in two equivalent antiparallel orientations within the catalytic groove, whereas the reduced isostere hexapeptide MVT-101 binds in a single orientation. When JG-365 was converted into the natural peptide substrate for molecular dynamic simulations, we found putative catalytically competent reactant states for both lytic water and direct nucleophilic attack mechanisms. Moreover, free energy perturbation calculations indicated that the insertion of catalytic water into the catalytic site is an energetically favorable process.  相似文献   

19.
Iron- and 2-oxoglutarate-dependent dioxygenases are a diverse family of non-heme iron enzymes that catalyze various important oxidations in cells. A key structural motif of these dioxygenases is a facial triad of 2-histidines-1-carboxylate that coordinates the Fe(II) at the catalytic site. Using histone demethylase JMJD1A and DNA repair enzyme ABH2 as examples, we show that this family of dioxygenases is highly sensitive to inhibition by carcinogenic nickel ions. We find that, with iron, the 50% inhibitory concentrations of nickel (IC50 [Ni(II)]) are 25 μm for JMJD1A and 7.5 μm for ABH2. Without iron, JMJD1A is 10 times more sensitive to nickel inhibition with an IC50 [Ni(II)] of 2.5 μm, and approximately one molecule of Ni(II) inhibits one molecule of JMJD1A, suggesting that nickel causes inhibition by replacing the iron. Furthermore, nickel-bound JMJD1A is not reactivated by excessive iron even up to a 2 mm concentration. Using x-ray absorption spectroscopy, we demonstrate that nickel binds to the same site in ABH2 as iron, and replacement of the iron by nickel does not prevent the binding of the cofactor 2-oxoglutarate. Finally, we show that nickel ions target and inhibit JMJD1A in intact cells, and disruption of the iron-binding site decreases binding of nickel ions to ABH2 in intact cells. Together, our results reveal that the members of this dioxygenase family are specific targets for nickel ions in cells. Inhibition of these dioxygenases by nickel is likely to have widespread impacts on cells (e.g. impaired epigenetic programs and DNA repair) and may eventually lead to cancer development.  相似文献   

20.
Epidemiological studies of workers in the nickel industry, animal exposure studies, and reports on the potential mechanisms of nickel-induced toxicity and carcinogenicity indicate that only crystalline sulfidic nickel compounds have been clearly established as carcinogenic or potentially carcinogenic in humans. This observation indicates the need to modify and update regulatory approaches for nickel to reflect noncancer toxicity values for some individual nickel species. Analysis of nickel compounds in residual oil fly ash (ROFA) indicates that sulfidic nickel compounds (e.g., nickel subsulfide, nickel sulfide) are not present. Thus, the potential for emission of carcinogenic nickel compounds from residual oil fly ash appears to be low. Preliminary reference concentrations (RfCs) for a number of nickel compounds, based on non-carcinogenic endpoints, are proposed on the basis of the benchmark dose approach in conjunction with NTP data for nickel species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号